Prove the following: (i) (A \ B) \ C = (A \ C) \ B = A \ (B \cup C) (ii) A \cap (B \cup C) = (A \cap B) \cup (A \cap C) (iii) A \triangle (B \triangle C) = (A \triangle B) \triang... Prove the following: (i) (A \ B) \ C = (A \ C) \ B = A \ (B \cup C) (ii) A \cap (B \cup C) = (A \cap B) \cup (A \cap C) (iii) A \triangle (B \triangle C) = (A \triangle B) \triangle C

Question image

Understand the Problem

The question asks to prove several identities involving set operations, including set difference (), intersection ((\cap)), union ((\cup)), and symmetric difference ((\triangle)). Each identity requires demonstrating that the sets on both sides of the equation are equivalent, typically by showing that each side is a subset of the other.

Answer

(i) $(A \setminus B) \setminus C = (A \setminus C) \setminus B = A \setminus (B \cup C)$ (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (iii) $A \triangle (B \triangle C) = (A \triangle B) \triangle C$
Answer for screen readers

(i) $(A \setminus B) \setminus C = (A \setminus C) \setminus B = A \setminus (B \cup C)$ (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (iii) $A \triangle (B \triangle C) = (A \triangle B) \triangle C$

Steps to Solve

  1. Prove (i): (A \ B) \ C = (A \ C) \ B

To prove the equality of two sets, we show that each is a subset of the other.

First, we show that $(A \setminus B) \setminus C \subseteq (A \setminus C) \setminus B$. Let $x \in (A \setminus B) \setminus C$. This means $x \in (A \setminus B)$ and $x \notin C$. Since $x \in A \setminus B$, we have $x \in A$ and $x \notin B$. Thus, we know $x \in A$, $x \notin B$, and $x \notin C$. Since $x \in A$ and $x \notin C$, we have $x \in A \setminus C$. Since $x \in A \setminus C$ and $x \notin B$, we have $x \in (A \setminus C) \setminus B$. Therefore, $(A \setminus B) \setminus C \subseteq (A \setminus C) \setminus B$.

Next, we show that $(A \setminus C) \setminus B \subseteq (A \setminus B) \setminus C$. Let $x \in (A \setminus C) \setminus B$. This means $x \in (A \setminus C)$ and $x \notin B$. Since $x \in A \setminus C$, we have $x \in A$ and $x \notin C$. Thus, we know $x \in A$, $x \notin B$, and $x \notin C$. Since $x \in A$ and $x \notin B$, we have $x \in A \setminus B$. Since $x \in A \setminus B$ and $x \notin C$, we have $x \in (A \setminus B) \setminus C$. Therefore, $(A \setminus C) \setminus B \subseteq (A \setminus B) \setminus C$. Since both inclusions hold, we conclude that $(A \setminus B) \setminus C = (A \setminus C) \setminus B$.

  1. Prove (i): (A \ B) \ C = A \ (B ∪ C)

Now, we show that $(A \setminus B) \setminus C = A \setminus (B \cup C)$.

First, we show that $(A \setminus B) \setminus C \subseteq A \setminus (B \cup C)$. Let $x \in (A \setminus B) \setminus C$. This means $x \in (A \setminus B)$ and $x \notin C$. Since $x \in A \setminus B$, we have $x \in A$ and $x \notin B$. Thus, we know $x \in A$, $x \notin B$, and $x \notin C$. Since $x \notin B$ and $x \notin C$, we have $x \notin (B \cup C)$. Since $x \in A$ and $x \notin (B \cup C)$, we have $x \in A \setminus (B \cup C)$. Therefore, $(A \setminus B) \setminus C \subseteq A \setminus (B \cup C)$.

Next, we show that $A \setminus (B \cup C) \subseteq (A \setminus B) \setminus C$. Let $x \in A \setminus (B \cup C)$. This means $x \in A$ and $x \notin (B \cup C)$. Since $x \notin (B \cup C)$, we have $x \notin B$ and $x \notin C$. Thus, we know $x \in A$, $x \notin B$, and $x \notin C$. Since $x \in A$ and $x \notin B$, we have $x \in A \setminus B$. Since $x \in A \setminus B$ and $x \notin C$, we have $x \in (A \setminus B) \setminus C$. Therefore, $A \setminus (B \cup C) \subseteq (A \setminus B) \setminus C$. Since both inclusions hold, we conclude that $(A \setminus B) \setminus C = A \setminus (B \cup C)$.

Combining the two results, we have $(A \setminus B) \setminus C = (A \setminus C) \setminus B = A \setminus (B \cup C)$.

  1. Prove (ii): A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

This is the distributive property of intersection over union. First, we show that $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Let $x \in A \cap (B \cup C)$. This means $x \in A$ and $x \in (B \cup C)$. Since $x \in B \cup C$, either $x \in B$ or $x \in C$ (or both). If $x \in B$, then since $x \in A$, we have $x \in A \cap B$. If $x \in C$, then since $x \in A$, we have $x \in A \cap C$. Therefore, $x \in (A \cap B) \cup (A \cap C)$. Thus, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.

Next, we show that $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Let $x \in (A \cap B) \cup (A \cap C)$. This means $x \in (A \cap B)$ or $x \in (A \cap C)$ (or both). If $x \in A \cap B$, then $x \in A$ and $x \in B$. Since $x \in B$, we have $x \in B \cup C$. Thus $x \in A \cap (B \cup C)$. If $x \in A \cap C$, then $x \in A$ and $x \in C$. Since $x \in C$, we have $x \in B \cup C$. Thus $x \in A \cap (B \cup C)$. Therefore, $x \in A \cap (B \cup C)$. Thus, $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$.

Since both inclusions hold, we conclude that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

  1. Prove (iii): A Δ (B Δ C) = (A Δ B) Δ C

To prove this, we recall that $A \triangle B = (A \setminus B) \cup (B \setminus A)$. Also $A \triangle B = (A \cup B) \setminus (A \cap B)$. We have $A \triangle (B \triangle C) = A \triangle ((B \setminus C) \cup (C \setminus B)) = (A \setminus ((B \setminus C) \cup (C \setminus B))) \cup (((B \setminus C) \cup (C \setminus B)) \setminus A)$. Similarly, $(A \triangle B) \triangle C = ((A \setminus B) \cup (B \setminus A)) \triangle C = (((A \setminus B) \cup (B \setminus A)) \setminus C) \cup (C \setminus ((A \setminus B) \cup (B \setminus A)))$.

Alternatively, we can use the property $A \triangle B = (A \cup B) \setminus (A \cap B)$. Using this, we have $A \triangle (B \triangle C) = (A \cup (B \triangle C)) \setminus (A \cap (B \triangle C))$. And $(A \triangle B) \triangle C = ((A \triangle B) \cup C) \setminus ((A \triangle B) \cap C)$.

Another approach is to define the characteristic function $\chi_A(x)$ to be $1$ if $x \in A$ and $0$ if $x \notin A$. Then $\chi_{A \triangle B}(x) = \chi_A(x) + \chi_B(x) \pmod{2}$. Therefore, $\chi_{A \triangle (B \triangle C)}(x) = \chi_A(x) + \chi_{B \triangle C}(x) \pmod{2} = \chi_A(x) + \chi_B(x) + \chi_C(x) \pmod{2}$. Also, $\chi_{(A \triangle B) \triangle C}(x) = \chi_{A \triangle B}(x) + \chi_C(x) \pmod{2} = \chi_A(x) + \chi_B(x) + \chi_C(x) \pmod{2}$. Since the characteristic functions are equal, the sets are equal, so $A \triangle (B \triangle C) = (A \triangle B) \triangle C$.

(i) $(A \setminus B) \setminus C = (A \setminus C) \setminus B = A \setminus (B \cup C)$ (ii) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (iii) $A \triangle (B \triangle C) = (A \triangle B) \triangle C$

More Information

The proofs demonstrate fundamental properties of set operations, which are essential in various areas of mathematics, including logic, computer science, and probability theory.

Tips

  • Forgetting to prove both directions of set equality (i.e., $A \subseteq B$ and $B \subseteq A$).
  • Incorrectly applying the definitions of set operations like set difference, union, intersection, and symmetric difference.
  • Making errors in logical reasoning when manipulating set membership.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser