OC = 6 cm y OB = 2 cm. ¿Cuánto vale FE/AB?

Question image

Understand the Problem

La pregunta nos pide calcular algo dada información sobre las longitudes de segmentos OC y OB. Probablemente se necesita determinar la longitud de algún otro segmento en la figura o alguna relación entre segmentos, basado en principios geométricos.

Answer

$ \frac{FE}{AB} = 3 $
Answer for screen readers

$ \frac{FE}{AB} = 3 $

Steps to Solve

  1. Identify Similar Triangles From the image we can see that $ \triangle OAB $ and $ \triangle OFE $ are similar triangles, due to the parallel lines L1, L2 and L3.

  2. Determine the Ratios of Corresponding Sides Since the triangles are similar, the ratios of their corresponding sides are equal. In particular, we have $ \frac{FE}{AB} = \frac{OF}{OA} = \frac{OE}{OB} $

  3. Focus on the Relevant Ratio We are interested in $ \frac{FE}{AB} $, and we are given $OC = 6$ cm and $OB = 2$ cm. From the diagram we observe that $OE = OC = 6$ cm and $OB = 2$ cm.

  4. Set up the Equation Then, $\frac{FE}{AB} = \frac{OE}{OB} = \frac{OC}{OB} $

  5. Substitute the given values $ \frac{FE}{AB} = \frac{6}{2} $

  6. Simplify the Expression $ \frac{FE}{AB} = 3 $

$ \frac{FE}{AB} = 3 $

More Information

The ratio of the sides FE and AB is 3. This indicates that FE is three times longer than AB.

Tips

  • Confusing which sides correspond to each other in the similar triangles.
  • Incorrectly setting up the ratios.
  • Arithmetic errors when simplifying the fraction.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!