If x:y:z = 1/2 : 1/3 : 1/4, what is the value of (x+z-y)/y?

Question image

Understand the Problem

The question provides a ratio x:y:z and asks us to find the value of the expression (x+z-y)/y. We can find a common denominator and perform basic arithmetic to arrive at the answer.

Answer

1. 25
Answer for screen readers
  1. 25

Steps to Solve

  1. Find a common denominator for the ratio

To get rid of the fractions in the ratio $x:y:z = \frac{1}{2} : \frac{1}{3} : \frac{1}{4}$, we find the least common multiple (LCM) of the denominators 2, 3, and 4. The LCM is 12.

  1. Multiply each term in the ratio by the common denominator

Multiply each fraction by 12: $x:y:z = (\frac{1}{2} \cdot 12) : (\frac{1}{3} \cdot 12) : (\frac{1}{4} \cdot 12) = 6:4:3$

  1. Express $x$ and $z$ in terms of $y$

From the ratio $x:y:z = 6:4:3$, we can write $x = \frac{6}{4}y = \frac{3}{2}y$ and $z = \frac{3}{4}y$.

  1. Substitute $x$ and $z$ in the expression

Now, substitute $x = \frac{3}{2}y$ and $z = \frac{3}{4}y$ into the expression $\frac{x+z-y}{y}$:

$\frac{x+z-y}{y} = \frac{\frac{3}{2}y + \frac{3}{4}y - y}{y}$

  1. Simplify the numerator

Combine the terms in the numerator: $\frac{3}{2}y + \frac{3}{4}y - y = \frac{6}{4}y + \frac{3}{4}y - \frac{4}{4}y = \frac{6+3-4}{4}y = \frac{5}{4}y$

  1. Simplify the entire expression

Substitute the simplified numerator back into the expression: $\frac{\frac{5}{4}y}{y} = \frac{5}{4}$

  1. Convert the fraction to a decimal

Convert $\frac{5}{4}$ to a decimal: $\frac{5}{4} = 1.25$

  1. 25

More Information

The ratio represents the relative proportions of x, y, and z. We scaled the ratio by multiplying by the LCM to eliminate fractions and simplify the calculations.

Tips

A common mistake is not finding a common denominator when simplifying the ratio. It is important to eliminate fractions when comparing ratios to make calculations easier. Also, errors can occur when combining the fractions in the numerator - carefully check your arithmetic.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser