If sin A = 3/5, find cos A and tan A.
Understand the Problem
The question is asking to find the values of cos A and tan A given that sin A is equal to 3/5. To solve this, we can use the Pythagorean identity and the definitions of cosine and tangent in relation to sine.
Answer
$ \cos A = \frac{4}{5} $ or $ -\frac{4}{5} $; $ \tan A = \frac{3}{4} $ or $ -\frac{3}{4} $
Answer for screen readers
The values are:
- $ \cos A = \frac{4}{5} $ or $ -\frac{4}{5} $
- $ \tan A = \frac{3}{4} $ or $ -\frac{3}{4} $
Steps to Solve
- Apply the Pythagorean Identity
To find cos A, we can use the Pythagorean identity which states that:
$$ \sin^2 A + \cos^2 A = 1 $$
Given that $\sin A = \frac{3}{5}$, we can substitute this into the identity:
$$ \left(\frac{3}{5}\right)^2 + \cos^2 A = 1 $$
- Calculate sin squared
Calculating $\sin^2 A$:
$$ \left(\frac{3}{5}\right)^2 = \frac{9}{25} $$
- Substitute and solve for cos A
Now substitute $\sin^2 A$ into the Pythagorean identity:
$$ \frac{9}{25} + \cos^2 A = 1 $$
We then isolate $\cos^2 A$:
$$ \cos^2 A = 1 - \frac{9}{25} $$
- Calculate 1 in terms of 25
Convert 1 into a fraction with a denominator of 25:
$$ 1 = \frac{25}{25} $$
- Perform the subtraction
Now we can find $\cos^2 A$:
$$ \cos^2 A = \frac{25}{25} - \frac{9}{25} = \frac{16}{25} $$
- Find cos A
Take the square root of both sides to find cos A:
$$ \cos A = \pm \sqrt{\frac{16}{25}} = \pm \frac{4}{5} $$
- Determine tan A
We know that:
$$ \tan A = \frac{\sin A}{\cos A} $$
Substituting the values:
If $\cos A = \frac{4}{5}$, then:
$$ \tan A = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} $$
If $\cos A = -\frac{4}{5}$, then:
$$ \tan A = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4} $$
The values are:
- $ \cos A = \frac{4}{5} $ or $ -\frac{4}{5} $
- $ \tan A = \frac{3}{4} $ or $ -\frac{3}{4} $
More Information
Using the sine value, we derived the cosine and tangent using fundamental trigonometric identities. The cosine can be positive or negative depending on the quadrant in which angle A lies.
Tips
- Forgetting to consider the positive and negative roots of cosine.
- Mixing up the relationship between sine, cosine, and tangent in the calculations.
- Not applying the Pythagorean identity correctly.
AI-generated content may contain errors. Please verify critical information