हल कीजिए: x dy - y dx - x (x^2 - y^2)^(1/2) dx = 0

Understand the Problem
यह प्रश्न एक अवकल समीकरण को हल करने के लिए कह रहा है: x dy - y dx - x * (x^2 - y^2)^(1/2) dx = 0
. हमें इस समीकरण को हल करके y को x के फलन के रूप में ज्ञात करना है।
Answer
$y = x \sin(\ln|x| + C)$
Answer for screen readers
$y = x \sin(\ln|x| + C)$
Steps to Solve
-
Rearrange the equation Begin by isolating the terms with $dy$ and $dx$: $$ x , dy - y , dx = x \sqrt{x^2 - y^2} , dx $$
-
Divide by $x^2$ Divide both sides of the equation by $x^2$ to get it into a more manageable form: $$ \frac{x , dy - y , dx}{x^2} = \frac{x \sqrt{x^2 - y^2}}{x^2} , dx $$ $$ \frac{x , dy - y , dx}{x^2} = \frac{\sqrt{x^2 - y^2}}{x} , dx $$
-
Recognize the left side as a derivative Notice that the left side is the derivative of $\frac{y}{x}$: $$ d\left(\frac{y}{x}\right) = \frac{\sqrt{x^2 - y^2}}{x} , dx $$
-
Simplify the square root term We can simplify the square root term by factoring out $x^2$: $$ d\left(\frac{y}{x}\right) = \frac{\sqrt{x^2(1 - \frac{y^2}{x^2})}}{x} , dx $$ $$ d\left(\frac{y}{x}\right) = \frac{x\sqrt{1 - \frac{y^2}{x^2}}}{x} , dx $$ $$ d\left(\frac{y}{x}\right) = \sqrt{1 - \frac{y^2}{x^2}} , dx $$
-
Integrate by substitution Let $u = \frac{y}{x}$. Then $du = \sqrt{1 - u^2} , \frac{dx}{x}$. Rearrange to isolate $dx$: Start with $$ du = \sqrt{1-u^2} , dx $$ $$ \frac{du}{\sqrt{1 - u^2}} = \frac{dx}{x} $$ Integrate both sides $$ \int \frac{du}{\sqrt{1 - u^2}} = \int \frac{dx}{x} $$ $$ \sin^{-1}(u) = \ln|x| + C $$
-
Substitute back for $u$ Substitute $u = \frac{y}{x}$ back into the equation: $$ \sin^{-1}\left(\frac{y}{x}\right) = \ln|x| + C $$
-
Isolate $y$ Solve for $y$: $$ \frac{y}{x} = \sin(\ln|x| + C) $$ $$ y = x \sin(\ln|x| + C) $$
$y = x \sin(\ln|x| + C)$
More Information
This is the general solution to the given differential equation. The solution involves a constant of integration, $C$, which can be determined if initial conditions are provided.
Tips
- Forgetting the constant of integration $C$ after integration.
- Incorrectly simplifying the square root.
- Making errors when substituting back for $u$.
AI-generated content may contain errors. Please verify critical information