Find the product of (6n + 7)(3n + 1).

Question image

Understand the Problem

The image shows examples and exercises related to multiplying polynomials and finding special products of polynomials. The task is to identify a specific question from the exercises provided in the image.

Answer

The problems are: 13. $(x^2 - 2x + 1)(x-3)$ 14. $(y^2 + 5y + 4)(3y + 2)$ 15. $(x-4)(x+2)$ 16. $(5b^2 - b - 7)(b+6)$ 17. $(z+8)(z-11)$ 18. $(2a-1)(a-3)$ 19. $(6n+7)(3n+1)$ 20. $(4n-5)(7n-3)$ 21. $(3x-2)(x+4)$ 22. $(x+11)^2$ 23. $(6y+1)^2$ 24. $(2x-y)^2$ 25. $(4a-3)^2$ 26. $(k+7)(k-7)$ 27. $(3s+5)(3s-5)$
Answer for screen readers

The exercises provided are: 13. $(x^2 - 2x + 1)(x-3)$ 14. $(y^2 + 5y + 4)(3y + 2)$ 15. $(x-4)(x+2)$ 16. $(5b^2 - b - 7)(b+6)$ 17. $(z+8)(z-11)$ 18. $(2a-1)(a-3)$ 19. $(6n+7)(3n+1)$ 20. $(4n-5)(7n-3)$ 21. $(3x-2)(x+4)$ 22. $(x+11)^2$ 23. $(6y+1)^2$ 24. $(2x-y)^2$ 25. $(4a-3)^2$ 26. $(k+7)(k-7)$ 27. $(3s+5)(3s-5)$

Steps to Solve

  1. Identify the section on multiplying polynomials

The section "8.2 Multiply Polynomials" contains exercises asking to find the product of polynomials.

  1. List the exercises in section 8.2

The exercises are numbered 13 through 21. They are: 13. $(x^2 - 2x + 1)(x-3)$ 14. $(y^2 + 5y + 4)(3y + 2)$ 15. $(x-4)(x+2)$ 16. $(5b^2 - b - 7)(b+6)$ 17. $(z+8)(z-11)$ 18. $(2a-1)(a-3)$ 19. $(6n+7)(3n+1)$ 20. $(4n-5)(7n-3)$ 21. $(3x-2)(x+4)$

  1. Identify the section on special products of polynomials

The section "8.3 Find Special Products of Polynomials" contains exercises asking to find the product of polynomials using special product rules.

  1. List the exercises in section 8.3

The exercises are numbered 22 through 27. They are: 22. $(x+11)^2$ 23. $(6y+1)^2$ 24. $(2x-y)^2$ 25. $(4a-3)^2$ 26. $(k+7)(k-7)$ 27. $(3s+5)(3s-5)$

The exercises provided are: 13. $(x^2 - 2x + 1)(x-3)$ 14. $(y^2 + 5y + 4)(3y + 2)$ 15. $(x-4)(x+2)$ 16. $(5b^2 - b - 7)(b+6)$ 17. $(z+8)(z-11)$ 18. $(2a-1)(a-3)$ 19. $(6n+7)(3n+1)$ 20. $(4n-5)(7n-3)$ 21. $(3x-2)(x+4)$ 22. $(x+11)^2$ 23. $(6y+1)^2$ 24. $(2x-y)^2$ 25. $(4a-3)^2$ 26. $(k+7)(k-7)$ 27. $(3s+5)(3s-5)$

More Information

The exercises cover two main topics: multiplying polynomials and finding special products of polynomials. The first set of exercises (13-21) involves general polynomial multiplication, while the second set (22-27) focuses on special product patterns such as the square of a binomial and the difference of squares.

Tips

  • Forgetting to distribute correctly when multiplying polynomials.
  • Making sign errors when multiplying negative terms.
  • Not combining like terms after expanding the product.
  • Incorrectly applying the special product formulas (e.g., $(a+b)^2 = a^2 + 2ab + b^2$).

AI-generated content may contain errors. Please verify critical information

Thank you for voting!