Evaluate ∫ dx / (a^2 - x^2)^(3/2)

Question image

Understand the Problem

The question is asking for the evaluation of the integral of the given expression involving x and a, specifically the integral of dx divided by the square root of (a squared minus x squared) raised to the power of 3/2.

Answer

$$ \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 - x^2}} + C $$
Answer for screen readers

$$ \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 - x^2}} + C $$

Steps to Solve

  1. Identify the Integral

    We have the integral

    $$ \int \frac{dx}{(a^2 - x^2)^{3/2}} $$

  2. Use the Substitution Method

    Let’s set

    $$ x = a \sin(\theta) $$

    Then,

    $$ dx = a \cos(\theta) d\theta $$

    and

    $$ a^2 - x^2 = a^2(1 - \sin^2(\theta)) = a^2 \cos^2(\theta) $$

  3. Rewrite the Integral

    Substitute into the integral,

    $$ \int \frac{a \cos(\theta) d\theta}{(a^2 \cos^2(\theta))^{3/2}} = \int \frac{a \cos(\theta) d\theta}{a^3 \cos^3(\theta)} $$

    This simplifies to

    $$ \int \frac{d\theta}{a^2 \cos^2(\theta)} $$

  4. Simplify the Integral

    Recognizing $ \sec(\theta) = \frac{1}{\cos(\theta)} $, we have:

    $$ \int \sec^2(\theta) \frac{d\theta}{a^2} $$

    This evaluates to

    $$ \frac{1}{a^2} \tan(\theta) + C $$

  5. Re-substitute the Original Variable

    Recall that

    $$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{x/a}{\sqrt{1 - \sin^2(\theta)}} = \frac{x/a}{\sqrt{(a^2 - x^2)/a^2}} = \frac{x}{\sqrt{a^2 - x^2}} $$

    So, we have:

    $$ \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 - x^2}} + C $$

$$ \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 - x^2}} + C $$

More Information

This result shows how using a trigonometric substitution can simplify the process of integrating functions involving square roots, particularly in the context of calculus.

Tips

  • Forgetting the substitution for (dx) when substituting trigonometric identities.
  • Not correctly simplifying terms in the integral after substitution.
  • Overlooking the need to convert back from (\theta) to (x) at the end.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser