Evaluate ∫ dx / (a^2 - x^2)^(3/2)
Understand the Problem
The question is asking for the evaluation of the integral of the given expression involving x and a, specifically the integral of dx divided by the square root of (a squared minus x squared) raised to the power of 3/2.
Answer
$$ \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 - x^2}} + C $$
Answer for screen readers
$$ \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 - x^2}} + C $$
Steps to Solve
-
Identify the Integral
We have the integral
$$ \int \frac{dx}{(a^2 - x^2)^{3/2}} $$
-
Use the Substitution Method
Let’s set
$$ x = a \sin(\theta) $$
Then,
$$ dx = a \cos(\theta) d\theta $$
and
$$ a^2 - x^2 = a^2(1 - \sin^2(\theta)) = a^2 \cos^2(\theta) $$
-
Rewrite the Integral
Substitute into the integral,
$$ \int \frac{a \cos(\theta) d\theta}{(a^2 \cos^2(\theta))^{3/2}} = \int \frac{a \cos(\theta) d\theta}{a^3 \cos^3(\theta)} $$
This simplifies to
$$ \int \frac{d\theta}{a^2 \cos^2(\theta)} $$
-
Simplify the Integral
Recognizing $ \sec(\theta) = \frac{1}{\cos(\theta)} $, we have:
$$ \int \sec^2(\theta) \frac{d\theta}{a^2} $$
This evaluates to
$$ \frac{1}{a^2} \tan(\theta) + C $$
-
Re-substitute the Original Variable
Recall that
$$ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{x/a}{\sqrt{1 - \sin^2(\theta)}} = \frac{x/a}{\sqrt{(a^2 - x^2)/a^2}} = \frac{x}{\sqrt{a^2 - x^2}} $$
So, we have:
$$ \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 - x^2}} + C $$
$$ \int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2} \frac{x}{\sqrt{a^2 - x^2}} + C $$
More Information
This result shows how using a trigonometric substitution can simplify the process of integrating functions involving square roots, particularly in the context of calculus.
Tips
- Forgetting the substitution for (dx) when substituting trigonometric identities.
- Not correctly simplifying terms in the integral after substitution.
- Overlooking the need to convert back from (\theta) to (x) at the end.
AI-generated content may contain errors. Please verify critical information