Entre los siguientes números, encuentre los que son múltiplos de 2, 3, 5 y 10: 235, 360, 487, 564, 681, 792, 854, 904

Question image

Understand the Problem

La pregunta pide identificar, de una lista dada de números, aquellos que son múltiplos de 2, 3, 5 y 10 al mismo tiempo. Para que un número sea múltiplo de todos estos, debe ser múltiplo de su mínimo común múltiplo (mcm).

Answer

360
Answer for screen readers

360

Steps to Solve

  1. Find the Least Common Multiple (LCM) of 2, 3, 5, and 10

To be a multiple of 2, 3, 5, and 10, a number must be a multiple of their least common multiple (LCM). First, find the prime factorization of each number:

  • 2 = 2
  • 3 = 3
  • 5 = 5
  • 10 = 2 x 5 The LCM is found by taking the highest power of each prime factor present in the numbers: $$ LCM(2, 3, 5, 10) = 2 \times 3 \times 5 = 30 $$ So, we need to find numbers in the list that are multiples of 30.
  1. Check each number for divisibility by 30

Divide each number in the list by 30 and check if the result is an integer:

  • 235 / 30 ≈ 7.83 (Not an integer)
  • 360 / 30 = 12 (Integer)
  • 487 / 30 ≈ 16.23 (Not an integer)
  • 564 / 30 = 18.8 (Not an integer)
  • 681 / 30 = 22.7 (Not an integer)
  • 792 / 30 = 26.4 (Not an integer)
  • 854 / 30 ≈ 28.47 (Not an integer)
  • 904 / 30 ≈ 30.13 (Not an integer)
  1. Identify the Multiples of 30

From the above calculations, only 360 is divisible by 30.

360

More Information

The LCM of 2, 3, 5 and 10 is 30. Therefore, any multiple of 30 will be a multiple of all four numbers.

Tips

  • Failing to calculate the LCM correctly. The LCM is crucial to simplifying the problem.
  • Incorrectly performing the division to check for multiples.
  • Missing that a multiple of 10 must end in a 0, which makes many of the numbers immediately ineligible

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser