¿Cuáles son los valores de x que satisfacen la desigualdad cuadrática -x^2 - 2x + 3 < 0?
Understand the Problem
La pregunta pide encontrar los valores de 'x' que satisfacen la desigualdad cuadrática -x^2 - 2x + 3 < 0. Esto implica resolver la desigualdad, lo que usualmente se hace encontrando las raíces de la ecuación cuadrática asociada (-x^2 - 2x + 3 = 0) y luego determinando los intervalos donde la desigualdad se cumple.
Answer
$x < -3$ or $x > 1$
Answer for screen readers
$x < -3$ or $x > 1$
Steps to Solve
- Convert the inequality to standard form
Multiply the inequality by -1 to make the coefficient of $x^2$ positive. Remember to flip the inequality sign:
$$-x^2 - 2x + 3 < 0$$ $$x^2 + 2x - 3 > 0$$
- Factor the quadratic expression
Factor the quadratic expression $x^2 + 2x - 3$:
$$x^2 + 2x - 3 = (x + 3)(x - 1)$$
Therefore, the inequality becomes:
$$(x + 3)(x - 1) > 0$$
- Find the critical points (roots)
Set each factor equal to zero and solve for $x$: $$x + 3 = 0 \Rightarrow x = -3$$ $$x - 1 = 0 \Rightarrow x = 1$$
These critical points, $x = -3$ and $x = 1$, divide the number line into three intervals: $(-\infty, -3)$, $(-3, 1)$, and $(1, \infty)$.
- Test each interval
Choose a test value within each interval and plug it into the factored inequality $(x + 3)(x - 1) > 0$ to see if the inequality holds true.
- Interval $(-\infty, -3)$: Let $x = -4$. Then $(-4 + 3)(-4 - 1) = (-1)(-5) = 5 > 0$. The inequality holds true.
- Interval $(-3, 1)$: Let $x = 0$. Then $(0 + 3)(0 - 1) = (3)(-1) = -3 > 0$. The inequality does not hold true.
- Interval $(1, \infty)$: Let $x = 2$. Then $(2 + 3)(2 - 1) = (5)(1) = 5 > 0$. The inequality holds true.
- Write the solution
Since the inequality $x^2 + 2x - 3 > 0$ holds true for the intervals $(-\infty, -3)$ and $(1, \infty)$, the solution is:
$$x < -3 \text{ or } x > 1$$
$x < -3$ or $x > 1$
More Information
The solution represents all real numbers less than -3 or greater than 1.
Tips
- Forgetting to flip the inequality sign when multiplying or dividing by a negative number.
- Incorrectly factoring the quadratic expression.
- Choosing test points outside the intervals.
- Including the critical points in the solution when the inequality is strict ($>$ or $<$).
AI-generated content may contain errors. Please verify critical information