¿Cuáles son las raíces del polinomio x^2 - 5x + 25?

Question image

Understand the Problem

La pregunta es sobre encontrar las raíces de un polinomio cuadrático. Necesitamos aplicar la fórmula cuadrática o completar el cuadrado para hallar las soluciones (raíces) de la ecuación dada.

Answer

$x = \frac{5}{2} \pm \frac{5\sqrt{3}}{2} i$
Answer for screen readers

b) (ver imagen a pantalla completa) $x = \frac{5}{2} \pm \frac{5\sqrt{3}}{2} i$

Steps to Solve

  1. Identify the coefficients

The quadratic equation is given by $x^2 - 5x + 25 = 0$. Here, $a = 1$, $b = -5$, and $c = 25$.

  1. Apply the quadratic formula

The quadratic formula is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Substituting the values of $a$, $b$, and $c$, we get: $$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(25)}}{2(1)}$$

  1. Simplify the expression

$$x = \frac{5 \pm \sqrt{25 - 100}}{2}$$ $$x = \frac{5 \pm \sqrt{-75}}{2}$$

  1. Simplify the square root

Since we have a negative number under the square root, we will have complex roots. We can rewrite $\sqrt{-75}$ as $\sqrt{75}i$. $$\sqrt{75} = \sqrt{25 \cdot 3} = 5\sqrt{3}$$ So, $\sqrt{-75} = 5\sqrt{3}i$.

  1. Write the roots

Substituting back into the equation for $x$: $$x = \frac{5 \pm 5\sqrt{3}i}{2}$$ $$x = \frac{5}{2} \pm \frac{5\sqrt{3}}{2}i$$

b) (ver imagen a pantalla completa) $x = \frac{5}{2} \pm \frac{5\sqrt{3}}{2} i$

More Information

The roots are complex conjugates of each other. This is expected since the discriminant ($b^2 - 4ac$) is negative.

Tips

A common mistake is to miscalculate the discriminant ($b^2 - 4ac$) or to incorrectly simplify the square root. Another common mistake is to forget the $\pm$ sign in the quadratic formula, or to not realize that the square root of a negative number results in an imaginary number.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser