Consider the following reaction at 298 K. 2 H2(g) + O2(g) → 2 H2O(g) ΔH° = -483.6 kJ Calculate the following quantities. ΔS_sys = , ΔS_surr = , ΔS_univ =

Question image

Understand the Problem

The question is asking to calculate the entropy changes for the system (ΔS_sys), surroundings (ΔS_surr), and the universe (ΔS_univ) for the given chemical reaction at 298 K, using standard entropy values as needed.

Answer

$$ \Delta S_{sys} = -88.6 \, \text{J/K}, \Delta S_{surr} = 1622.15 \, \text{J/K}, \Delta S_{univ} = 1533.55 \, \text{J/K} $$
Answer for screen readers

$$ \Delta S_{sys} = -88.6 , \text{J/K} $$

$$ \Delta S_{surr} = 1622.15 , \text{J/K} $$

$$ \Delta S_{univ} = 1533.55 , \text{J/K} $$

Steps to Solve

  1. Calculate ΔS_sys (System Entropy Change)

To find the entropy change of the system ($\Delta S_{sys}$), use the standard entropy values for the reactants and products. The formula is:

$$ \Delta S_{sys} = \sum S^\circ_{products} - \sum S^\circ_{reactants} $$

From standard entropy tables, assume the following values (in J/K·mol):

  • $S^\circ(H_2(g)) = 130.6$
  • $S^\circ(O_2(g)) = 205.0$
  • $S^\circ(H_2O(g)) = 188.8$

For the reaction:

$$ \Delta S_{sys} = [2 \cdot S^\circ(H_2O)] - [2 \cdot S^\circ(H_2) + S^\circ(O_2)] $$

  1. Plug in the values

Now substituting in the values:

$$ \Delta S_{sys} = [2 \cdot 188.8] - [2 \cdot 130.6 + 205.0] $$

Calculating it:

$$ \Delta S_{sys} = 377.6 - (261.2 + 205.0) $$ $$ \Delta S_{sys} = 377.6 - 466.2 $$ $$ \Delta S_{sys} = -88.6 , \text{J/K} $$

  1. Calculate ΔS_surr (Surroundings Entropy Change)

The entropy change of the surroundings ($\Delta S_{surr}$) can be calculated using the enthalpy change ($\Delta H^\circ$) and the temperature (T):

$$ \Delta S_{surr} = -\frac{\Delta H^\circ}{T} $$

Substituting the values:

$$ \Delta S_{surr} = -\frac{-483600 , \text{J}}{298 , \text{K}} $$

  1. Simplify the equation

Calculating:

$$ \Delta S_{surr} = \frac{483600}{298} = 1622.15 , \text{J/K} $$

  1. Calculate ΔS_univ (Total Entropy Change)

The total entropy change of the universe ($\Delta S_{univ}$) is the sum of $\Delta S_{sys}$ and $\Delta S_{surr}$:

$$ \Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} $$

Substituting in:

$$ \Delta S_{univ} = -88.6 + 1622.15 $$

  1. Final Calculation

Calculating the total:

$$ \Delta S_{univ} = 1533.55 , \text{J/K} $$

$$ \Delta S_{sys} = -88.6 , \text{J/K} $$

$$ \Delta S_{surr} = 1622.15 , \text{J/K} $$

$$ \Delta S_{univ} = 1533.55 , \text{J/K} $$

More Information

The calculations show the contributions of the system and surroundings to the total entropy change. A negative $\Delta S_{sys}$ indicates the system becomes more ordered, while a positive $\Delta S_{surr}$ signifies that the surroundings gain disorder from the exothermic reaction.

Tips

  • Incorrect Sign for ΔH: Ensure the enthalpy change is used correctly since it's negative for exothermic reactions.
  • Units Confusion: Always keep track of units (Joules vs. kilojoules) when using standard entropy values and converting ΔH.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser