चित्रमा सह-भित्री कोणहरूको जोडा लेख्नुहोस्। x को मान पत्ता लगाउनुहोस्। कोण APR को मान कति भएमा AB र CD समानान्तर हुन्छन्? चित्रमा सह-भित्री कोणहरूको जोडा लेख्नुहोस्। x को मान पत्ता लगाउनुहोस्। कोण APR को मान कति भएमा AB र CD समानान्तर हुन्छन्?

Understand the Problem
यो प्रश्नले एउटा चित्र दिएको छ जसमा दुईवटा सीधा रेखाहरू एकअर्कालाई काट्छन्। प्रश्नमा सोधिएको छ कि चित्रमा सह-भित्री कोणहरूको जोडा लेख्नुहोस्, x को मान पत्ता लगाउनुहोस्, र कोण APR को मान कति भएमा AB र CD समानान्तर हुन्छन् पत्ता लगाउनुहोस्।
Answer
a. $\angle APR$ and $\angle PRQ$ b. $x = \frac{180}{11}$ c. $\angle APR = 100^\circ$
Answer for screen readers
a. A pair of co-interior angles: $\angle APR$ and $\angle PRQ$
b. The value of x: $\frac{180}{11}$
c. The value of $\angle APR$: $100^\circ$
Steps to Solve
- Identify a pair of co-interior angles
Co-interior angles are angles on the same side of the transversal and inside the two lines. In the figure, $\angle APR$ and $\angle PRQ$ are co-interior angles.
- Find the value of x
Since $\angle APR$ and $\angle PRQ$ form a straight line, their sum is $180^\circ$. Therefore,
$5x + 6x = 180$
$11x = 180$
$x = \frac{180}{11} = 16.36$
- Determine the value of $\angle APR$ for AB and CD to be parallel
For lines AB and CD to be parallel, the co-interior angles $\angle APR$ and $\angle PRD$ must be supplementary (add up to $180^\circ$). So, $\angle APR + \angle PRQ = 180^\circ$ if AB || CD. That is, $\angle APR$ and $\angle PRD$ have to add to $180^\circ$. Also, if AB || CD then $\angle APR = \angle CRQ$, which are corresponding angles. $\angle CRQ = 6x$ so $\angle APR$ must also equal $6x$ since $\angle CRQ$ and $\angle PRD$ are supplementary. If $\angle APR = \angle CRQ$, then $\angle APR = 6x = 6 * \frac{180}{11} = \frac{1080}{11}$. We want $\angle APR + \angle PRD = 180$, or $6x + 4x = 10x = 180$, so $x = 18$. To find the value of $\angle APR = 5x$, we can write: $\angle APR + \angle PRD = 180^\circ$
$5x + 4x = 180$
$9x = 180$
$x = 20$ Therefore, $APR = 5x = 5 \times 20 = 100$
a. A pair of co-interior angles: $\angle APR$ and $\angle PRQ$
b. The value of x: $\frac{180}{11}$
c. The value of $\angle APR$: $100^\circ$
More Information
Co-interior angles, also known as consecutive interior angles, lie on the same side of the transversal and between the two lines. When the two lines are parallel, co-interior angles are supplementary, meaning they add up to 180 degrees.
Tips
- Confusing co-interior angles with other angle pairs such as alternate interior angles or corresponding angles.
- Incorrectly setting up the equation to solve for x.
- Assuming that $5x + 4x = 180$ without appropriate justification.
AI-generated content may contain errors. Please verify critical information