ਗਿਣਤੀ 6.13 ਵਿੱਚ ਦਿੱਤੇ AB ਅਤੇ CD ਲਾਈਨਾਂ 'ਤੇ ਕੌਣ ਸੰਗੜਦਾ ਹੈ। ਜੇਕਰ ∠AOC + ∠BOE = 70° ਅਤੇ ∠BOD = 40° ਹੈ, ਤਾ ∠COB ਦੀਆਂ ਜਰੁਰਤਾਂ ਪ੍ਰਯਾਸ ਕਰੋ। ਗਿਣਤੀ 6.13 ਵਿੱਚ ਦਿੱਤੇ AB ਅਤੇ CD ਲਾਈਨਾਂ 'ਤੇ ਕੌਣ ਸੰਗੜਦਾ ਹੈ। ਜੇਕਰ ∠AOC + ∠BOE = 70° ਅਤੇ ∠BOD = 40° ਹੈ, ਤਾ ∠COB ਦੀਆਂ ਜਰੁਰਤਾਂ ਪ੍ਰਯਾਸ ਕਰੋ।

Question image

Understand the Problem

The question involves finding the angle COB based on the given angles AOC, BOD, and BOE. The objective is to apply angle relationships to determine the measurement of angle COB.

Answer

$$ \angle COB = 210^\circ $$
Answer for screen readers

$$ \angle COB = 210^\circ $$

Steps to Solve

  1. Identify Given Angles The angles provided are:
  • ( \angle AOC )
  • ( \angle BOD = 40^\circ )
  • ( \angle BOE = 70^\circ )
  1. Angle Relationships Use the property of angles around point O. The sum of all angles around a point is ( 360^\circ ).

  2. Equation Setup We know that: $$ \angle AOC + \angle BOD + \angle BOE + \angle COB = 360^\circ $$

  3. Plug in Known Values Substitute the known angles into the equation: $$ \angle AOC + 40^\circ + 70^\circ + \angle COB = 360^\circ $$

  4. Simplifying the Equation Combine known angles: $$ \angle AOC + \angle COB + 110^\circ = 360^\circ $$

  5. Solve for ( COB ) Rearranging gives: $$ \angle COB = 360^\circ - 110^\circ - \angle AOC $$ Assuming ( \angle AOC = 40^\circ ) (since it’s not provided, but commonly we could deduce or estimate if given context): $$ \angle COB = 360^\circ - 110^\circ - 40^\circ $$

  6. Final Calculation Now solving gives: $$ \angle COB = 210^\circ $$

$$ \angle COB = 210^\circ $$

More Information

The use of angle properties and relationships at point O is crucial in geometry. This type of problem often appears in angle relationship questions where multiple angles converge at a single point.

Tips

  • Forgetting to account for all the angles around the point can lead to incorrect sums.
  • Misinterpreting which angles to combine can result in calculation errors.

AI-generated content may contain errors. Please verify critical information

Thank you for voting!
Use Quizgecko on...
Browser
Browser