30/44 - 40/44
Understand the Problem
The question is asking us to perform a subtraction of two fractions, specifically to calculate the difference between 30/44 and 40/44.
Answer
$ \frac{-5}{22} $
Answer for screen readers
The final answer is $ \frac{-5}{22} $.
Steps to Solve
-
Identify the fractions
We are given two fractions, $ \frac{30}{44} $ and $ \frac{40}{44} $. -
Common denominator
Since both fractions have the same denominator (44), we can directly subtract the numerators. -
Subtract the numerators
Now we perform the subtraction of the numerators:
$$ 30 - 40 = -10 $$ -
Write the result as a fraction
The result will be:
$$ \frac{-10}{44} $$ -
Simplify the fraction
To simplify $ \frac{-10}{44} $, we find the greatest common divisor (GCD) of 10 and 44, which is 2. Now we divide both the numerator and the denominator by 2:
$$ \frac{-10 \div 2}{44 \div 2} = \frac{-5}{22} $$
The final answer is $ \frac{-5}{22} $.
More Information
The result indicates that $ \frac{40}{44} $ is larger than $ \frac{30}{44} $, leading to a negative difference of $ \frac{-5}{22} $. Fractions can represent both positive and negative values, which is important in understanding their relationships.
Tips
- Neglecting to reduce the fraction to its simplest form.
- Subtracting the fractions directly without noting that they share the same denominator, which can complicate the process.
AI-generated content may contain errors. Please verify critical information