1. If A = [[0.8, 0.6], [-0.6, 0.8]], find A³. 2. Prove that the product of two matrices [[cos²(θ), cos(θ)sin(θ)], [cos(θ)sin(θ), sin²(θ)]] and [[cos²(φ), cos(φ)sin(φ)], [cos(φ)sin(... 1. If A = [[0.8, 0.6], [-0.6, 0.8]], find A³. 2. Prove that the product of two matrices [[cos²(θ), cos(θ)sin(θ)], [cos(θ)sin(θ), sin²(θ)]] and [[cos²(φ), cos(φ)sin(φ)], [cos(φ)sin(φ), sin²(φ)]] is a zero matrix when θ and φ differ by an odd multiple of π/2. 3. Find the product of the following two matrices [[0, c, -b], [-c, 0, a]] and [[a², ab, ac], [ab, b², bc]]

Understand the Problem
The image presents three matrix-related problems. The first asks to find A cubed, where A is a 2x2 matrix with decimal entries. The second asks to prove that the product of two given matrices is a zero matrix under a specific condition relating (\theta) and (\phi). The third asks to find the product of two more matrices that include variables.
Answer
1. $A^3 = \begin{bmatrix} -0.352 & 0.936 \\ -0.936 & -0.352 \end{bmatrix}$ 2. Product is a zero matrix when $\theta - \phi = (2n+1)\frac{\pi}{2}$, where $n$ is an integer. 3. $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Answer for screen readers
- $A^3 = \begin{bmatrix} -0.352 & 0.936 \ -0.936 & -0.352 \end{bmatrix}$
- See proof in steps_to_solve_markdown section.
- $\begin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$
Steps to Solve
- Calculate $A^2$
To find $A^2$, multiply matrix $A$ by itself.
$A^2 = A \cdot A = \begin{bmatrix} 0.8 & 0.6 \ -0.6 & 0.8 \end{bmatrix} \cdot \begin{bmatrix} 0.8 & 0.6 \ -0.6 & 0.8 \end{bmatrix} = \begin{bmatrix} (0.8)(0.8) + (0.6)(-0.6) & (0.8)(0.6) + (0.6)(0.8) \ (-0.6)(0.8) + (0.8)(-0.6) & (-0.6)(0.6) + (0.8)(0.8) \end{bmatrix} = \begin{bmatrix} 0.64 - 0.36 & 0.48 + 0.48 \ -0.48 - 0.48 & -0.36 + 0.64 \end{bmatrix} = \begin{bmatrix} 0.28 & 0.96 \ -0.96 & 0.28 \end{bmatrix}$
- Calculate $A^3$
To find $A^3$, multiply $A^2$ by $A$.
$A^3 = A^2 \cdot A = \begin{bmatrix} 0.28 & 0.96 \ -0.96 & 0.28 \end{bmatrix} \cdot \begin{bmatrix} 0.8 & 0.6 \ -0.6 & 0.8 \end{bmatrix} = \begin{bmatrix} (0.28)(0.8) + (0.96)(-0.6) & (0.28)(0.6) + (0.96)(0.8) \ (-0.96)(0.8) + (0.28)(-0.6) & (-0.96)(0.6) + (0.28)(0.8) \end{bmatrix} = \begin{bmatrix} 0.224 - 0.576 & 0.168 + 0.768 \ -0.768 - 0.168 & -0.576 + 0.224 \end{bmatrix} = \begin{bmatrix} -0.352 & 0.936 \ -0.936 & -0.352 \end{bmatrix}$
- Prove that the product of the two matrices is a zero matrix
Let $B = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$ and $C = \begin{bmatrix} \cos^2 \phi & \cos \phi \sin \phi \ \cos \phi \sin \phi & \sin^2 \phi \end{bmatrix}$. Then, $BC = \begin{bmatrix} \cos^2 \theta \cos^2 \phi + \cos \theta \sin \theta \cos \phi \sin \phi & \cos^2 \theta \cos \phi \sin \phi + \cos \theta \sin \theta \sin^2 \phi \ \cos \theta \sin \theta \cos^2 \phi + \sin^2 \theta \cos \phi \sin \phi & \cos \theta \sin \theta \cos \phi \sin \phi + \sin^2 \theta \sin^2 \phi \end{bmatrix}$ $BC = \begin{bmatrix} \cos \theta \cos \phi (\cos \theta \cos \phi + \sin \theta \sin \phi) & \cos \theta \sin \phi (\cos \theta \cos \phi + \sin \theta \sin \phi) \ \sin \theta \cos \phi (\cos \theta \cos \phi + \sin \theta \sin \phi) & \sin \theta \sin \phi (\cos \theta \cos \phi + \sin \theta \sin \phi) \end{bmatrix}$ $BC = \begin{bmatrix} \cos \theta \cos \phi \cos(\theta - \phi) & \cos \theta \sin \phi \cos(\theta - \phi) \ \sin \theta \cos \phi \cos(\theta - \phi) & \sin \theta \sin \phi \cos(\theta - \phi) \end{bmatrix}$
Given that $\theta$ and $\phi$ differ by an odd multiple of $\frac{\pi}{2}$, then $\theta - \phi = (2n+1)\frac{\pi}{2}$, where n is an integer. Thus $\cos(\theta - \phi) = \cos((2n+1)\frac{\pi}{2}) = 0$. Therefore, $BC = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$.
- Find the product of the matrices
Let $D = \begin{bmatrix} 0 & c & -b \ -c & 0 & a \end{bmatrix}$ and $E = \begin{bmatrix} a^2 & ab & ac \ ab & b^2 & bc \ ac & bc & c^2 \end{bmatrix}$. Then, $DE = \begin{bmatrix} (0)(a^2) + (c)(ab) + (-b)(ac) & (0)(ab) + (c)(b^2) + (-b)(bc) & (0)(ac) + (c)(bc) + (-b)(c^2) \ (-c)(a^2) + (0)(ab) + (a)(ac) & (-c)(ab) + (0)(b^2) + (a)(bc) & (-c)(ac) + (0)(bc) + (a)(c^2) \end{bmatrix}$ $DE = \begin{bmatrix} 0 + abc - abc & 0 + cb^2 - b^2c & 0 + bc^2 - bc^2 \ -ca^2 + 0 + a^2c & -abc + 0 + abc & -ac^2 + 0 + ac^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$
- $A^3 = \begin{bmatrix} -0.352 & 0.936 \ -0.936 & -0.352 \end{bmatrix}$
- See proof in steps_to_solve_markdown section.
- $\begin{bmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$
More Information
Matrix multiplication can be tedious, but it's a fundamental operation in linear algebra with many applications. The second problem involved trigonometric identities to simplify the matrix product, leading to the zero matrix under the given condition. The final problem revealed an interesting result: the product of two non-zero matrices resulted in a zero matrix.
Tips
- In matrix multiplication, ensure that the number of columns in the first matrix matches the number of rows in the second matrix.
- Pay close attention to signs when performing element-wise calculations during matrix multiplication.
- Don't assume matrix multiplication is commutative (i.e., $A \cdot B$ is not necessarily equal to $B \cdot A$).
AI-generated content may contain errors. Please verify critical information