1) ∫ cos² x dx = ? 2) ∫ du/(e^x + e^(-x)) = ? 3) ∫ (tan⁻¹ x)²/(1 - x²) dx = ? 4) ∫ sin¹⁷ x cos³ x dx = ? 5) ∫ sinⁿ x dx = ? 6) ∫[0 to π/2] log tan x dx = ? 7) ∫ sec x dx/(sec... 1) ∫ cos² x dx = ? 2) ∫ du/(e^x + e^(-x)) = ? 3) ∫ (tan⁻¹ x)²/(1 - x²) dx = ? 4) ∫ sin¹⁷ x cos³ x dx = ? 5) ∫ sinⁿ x dx = ? 6) ∫[0 to π/2] log tan x dx = ? 7) ∫ sec x dx/(sec x + tan x) = ? 8) ∫ dx/(1 - sin x) = ? 9) ∫ cos³ x sin x dx = ? 10) ∫ log x dx = ?
Understand the Problem
The question consists of a series of integration problems that need to be solved. Each problem represents a different integral that involves various functions, such as trigonometric and logarithmic functions.
Answer
1) $ \frac{x}{2} + \frac{1}{4} \sin(2x) + C $ 2) $ \frac{1}{2} \ln|\tanh(\frac{u}{2})| + C $ 3) Complex integral 4) $ \int u^{17} (1 - u^2)^{3/2} \, du $ 5) Use reduction 6) $ -\frac{\pi}{2} \log(2) $ 7) $ \ln|sec(x) + tan(x)| + C $ 8) Transformation 9) $ -\frac{\cos^4 x}{4} + C $ 10) $ x \log x - x + C $
Answer for screen readers
-
$ \frac{x}{2} + \frac{1}{4} \sin(2x) + C $
-
$ \frac{1}{2} \ln|\tanh(\frac{u}{2})| + C $
-
Requires parts, complex integral.
-
$ \int u^{17} (1 - u^2)^{3/2} , du $
-
Depends on parity of $n$: use reduction.
-
$ -\frac{\pi}{2} \log(2) $
-
$ \ln|sec(x) + tan(x)| + C $
-
Transformation leads to elementary parts.
-
$ -\frac{\cos^4 x}{4} + C $
-
$ x \log x - x + C $
Steps to Solve
- First Integral: ∫ cos² x dx
Use the identity:
$$ \cos^2 x = \frac{1 + \cos(2x)}{2} $$
Then, integrate:
$$ \int \cos^2 x , dx = \int \frac{1 + \cos(2x)}{2} , dx = \frac{1}{2} \int 1 , dx + \frac{1}{2} \int \cos(2x) , dx $$
This results in:
$$ = \frac{x}{2} + \frac{1}{4} \sin(2x) + C $$
- Second Integral: ∫ du/(e^u + e^(-u))
Rewrite the integral:
$$ \int \frac{du}{e^u + e^{-u}} = \int \frac{du}{2 \cosh(u)} $$
Then, it simplifies to:
$$ = \frac{1}{2} \int \text{sech}(u) , du = \frac{1}{2} \ln|\tanh(\frac{u}{2})| + C $$
- Third Integral: ∫ (tan⁻¹ x)²/(1 - x²) dx
Use the substitution $u = \tan^{-1}(x)$, then $dx = \frac{1}{1+x^2} , du$:
$$ = \int u^2 \frac{du}{1-\tan^2(u)} $$
This is a complicated integration, requiring integration by parts.
- Fourth Integral: ∫ sin¹⁷ x cos³ x dx
Use the substitution:
$$ u = \sin(x), , du = \cos(x) , dx $$
Then the integral becomes:
$$ \int u^{17} (1 - u^2)^{3/2} , du $$
- Fifth Integral: ∫ sinⁿ x dx
Use reduction formulas, depending on whether $n$ is even or odd. If $n$ is even, relate to $\cos(x)$. If odd, factor out $\cos(x)$.
- Sixth Integral: ∫[0 to π/2] log tan x dx
Use the property of definite integrals:
$$ I = \int_0^{\frac{\pi}{2}} \log(\tan x) , dx = -\frac{\pi}{2} \log(2) $$
- Seventh Integral: ∫ sec x dx/(sec x + tan x)
Using substitution:
$$ u = sec(x) + tan(x), , du = (sec(x)tan(x) + sec^2(x)) dx $$
This transforms into:
$$ \int \frac{1}{u} , du = \ln|sec(x) + tan(x)| + C $$
- Eighth Integral: ∫ dx/(1 - sin x)
Using the identity:
$$ 1 - \sin x = \frac{(1 - \sin x)^2}{1 + \sin x} $$
This results in a transformation and taking elementary parts.
- Ninth Integral: ∫ cos³ x sin x dx
Use substitution:
$$ u = \cos(x), , du = -\sin(x) , dx $$
Integrate:
$$ -\int u^3 , du = -\frac{u^4}{4} + C = -\frac{\cos^4 x}{4} + C $$
- Tenth Integral: ∫ log x dx
Use integration by parts:
Let $u = \log x \Rightarrow du = \frac{1}{x} , dx$ and $dv = dx$ gives:
$$ = x \log x - \int \frac{1}{x} , dx $$
This simplifies to:
$$ = x \log x - x + C $$
-
$ \frac{x}{2} + \frac{1}{4} \sin(2x) + C $
-
$ \frac{1}{2} \ln|\tanh(\frac{u}{2})| + C $
-
Requires parts, complex integral.
-
$ \int u^{17} (1 - u^2)^{3/2} , du $
-
Depends on parity of $n$: use reduction.
-
$ -\frac{\pi}{2} \log(2) $
-
$ \ln|sec(x) + tan(x)| + C $
-
Transformation leads to elementary parts.
-
$ -\frac{\cos^4 x}{4} + C $
-
$ x \log x - x + C $
More Information
These integrals involve various techniques like substitution, integration by parts, and reduction formulas. Mastery of these techniques is vital in calculus.
Tips
- Not applying trigonometric identities when necessary.
- Missing the proper limits or properties of definite integrals.
- Confusing the integration by parts setup.
AI-generated content may contain errors. Please verify critical information