Understanding Vector Spaces and Their Axioms

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Which characteristic was a defining feature of satellite states during the Cold War?

  • Military alliances with the United States for protection.
  • Domination by a nearby major power, particularly the Soviet Union. (correct)
  • Political autonomy and the right to their own foreign policy.
  • Economic self-sufficiency and trade independence.

What was the primary goal of the Truman Doctrine?

  • To remain neutral in conflicts between communist and democratic nations.
  • To provide economic and military assistance to nations resisting communism. (correct)
  • To promote cultural exchange programs with the Soviet Union.
  • To establish free trade agreements with communist countries.

What impact did the Marshall Plan have on European nations after World War II?

  • It facilitated the economic recovery of Western European nations by providing substantial financial aid. (correct)
  • It forced European nations to adopt communist ideologies.
  • It economically isolated Western Europe leading to widespread poverty.
  • It triggered military conflicts between Western and Eastern Europe.

What did George F. Kennan believe regarding the Soviet Union that influenced US policy?

<p>The Soviet Union's expansion should be contained within its existing borders. (C)</p> Signup and view all the answers

What was the primary reason for Stalin's blockade of all roads leading to West Berlin in 1948?

<p>To force the Western powers out of Berlin. (C)</p> Signup and view all the answers

How did the superpowers compete during the space race?

<p>By launching satellites and developing space technology to showcase their superiority. (C)</p> Signup and view all the answers

What was the purpose of the House Un-American Activities Committee (HUAC)?

<p>To investigate and expose communist influence in various sectors of American society. (B)</p> Signup and view all the answers

What rationale did President Eisenhower use when he announced the Eisenhower Doctrine?

<p>To use force to assist any Middle Eastern nation threatened by communism. (D)</p> Signup and view all the answers

What was the significance of the formation of the Southeast Asia Treaty Organization (SEATO)?

<p>It was a defensive alliance aimed at preventing the spread of communism in Southeast Asia. (B)</p> Signup and view all the answers

What was the concept of 'massive retaliation' during the Cold War?

<p>A policy of threatening to use overwhelming force, possibly nuclear, in response to aggression. (B)</p> Signup and view all the answers

Flashcards

Containment

A policy of keeping Communism contained within its existing borders

Truman Doctrine

Launched in 1947, it was a program to economically and militarily help nations resist communism anywhere in the world

Germany

After WWII it was divided into four zones with Britain, France and the US controlling the west, while the USSR controlled the east

Satellite nation

A smaller country dominated by a nearby power.

Signup and view all the flashcards

HUAC

HUAC was formed as a temporary investigative unit to look into Communist activity in the U.S. Hollywood was attacked.

Signup and view all the flashcards

The Red Scare

The spreading of communism to China and the apparent growing strength of the Soviet Union led some Americans to fear that communism could spread to the United States.

Signup and view all the flashcards

Space Race

The superpowers competed in space. In 1957 the USSR launched the satellite Sputnik into Earth's orbit.

Signup and view all the flashcards

Massive Retaliation

Policy of threatening to use massive force (possibly nuclear) in response to aggression.

Signup and view all the flashcards

Eisenhower Doctrine

The US would use force to help any Middle Eastern nation threatened by communism.

Signup and view all the flashcards

MAD

Theory stated that a nuclear war between the superpowers would result in the total annihilation of both nations.

Signup and view all the flashcards

Study Notes

Vector Spaces

  • A vector space is a set $V$.
  • Vector addition: For $\textbf{u}, \textbf{v} \in V$, there is a unique element $\textbf{u} + \textbf{v} \in V$.
  • Scalar multiplication: For $\textbf{u} \in V$ and scalar $c \in \mathbb{R}$, there is a unique element $c\textbf{u} \in V$.

Vector Space Axioms

  • $\textbf{u} + \textbf{v} = \textbf{v} + \textbf{u}$ (Commutativity).
  • $\textbf{u} + (\textbf{v} + \textbf{w}) = (\textbf{u} + \textbf{v}) + \textbf{w}$ (Associativity).
  • There exists $\textbf{0} \in V$ such that $\textbf{u} + \textbf{0} = \textbf{u}$ (Additive Identity).
  • For every $\textbf{u} \in V$, there exists $-\textbf{u} \in V$ such that $\textbf{u} + (-\textbf{u}) = \textbf{0}$ (Additive Inverse).
  • $c(\textbf{u} + \textbf{v}) = c\textbf{u} + c\textbf{v}$ (Distributivity).
  • $(c + d)\textbf{u} = c\textbf{u} + d\textbf{u}$ (Distributivity).
  • $c(d\textbf{u}) = (cd)\textbf{u}$ (Associativity).
  • $1\textbf{u} = \textbf{u}$ (Multiplicative Identity).

Vector Space Examples

  • $\mathbb{R}^n$ is a vector space with the usual vector addition and scalar multiplication.
  • $M_{m \times n}$, the set of all $m \times n$ matrices, is a vector space.
  • $\mathbb{P}_n$, the set of all polynomials of degree at most $n$, is a vector space.
  • $C[a, b]$, the set of all continuous functions on $[a, b]$, is a vector space.
  • $\mathbb{R}^2 \nsubseteq \mathbb{R}^3$

Vector Space Theorem

  • $V$ is a vector space, $\textbf{u} \in V$, and $c$ is a scalar.
  • $0\textbf{u} = \textbf{0}$.
  • $c\textbf{0} = \textbf{0}$.
  • $(-1)\textbf{u} = -\textbf{u}$.

Subspace Definition

  • A subspace $H$ of a vector space $V$ is a subset of $V$.

Subspace Properties

  • The zero vector $\textbf{0}$ is in $H$.
  • For each $\textbf{u}$ and $\textbf{v}$ in $H$, $\textbf{u} + \textbf{v}$ is in $H$ (Closed under addition).
  • For each $\textbf{u}$ in $H$ and scalar $c$, $c\textbf{u}$ is in $H$ (Closed under scalar multiplication).
  • A subspace $H$ of $V$ is itself a vector space.

Subspace Examples

  • $H = {\begin{bmatrix} x \ y \end{bmatrix} : x = 2y }$ is a subspace of $\mathbb{R}^2$.
  • $H = {\begin{bmatrix} x \ y \end{bmatrix} : x = y + 1 }$ is not a subspace of $\mathbb{R}^2$.
  • $H = {\begin{bmatrix} x \ y \ z \end{bmatrix} : x - 3y + z = 0 }$ is a subspace of $\mathbb{R}^3$.
  • $H = {\begin{bmatrix} x \ y \end{bmatrix} : x^2 + y^2 = 1 }$ is not a subspace of $\mathbb{R}^2$.

Subspace Theorem

  • $V$ is a vector space and $\textbf{v}_1, \textbf{v}_2,..., \textbf{v}_p$ are vectors in $V$.
  • $Span{\textbf{v}_1, \textbf{v}_2,..., \textbf{v}_p}$ is a subspace of $V$.

Chapitre 3 Suites Numériques

Suite Numérique

  • It is a function defined on $\mathbb{N}$ or a part of $\mathbb{N}$ with values in $\mathbb{R}$.
  • It is noted as $(U_n){n \in \mathbb{N}}$ or $(U_n){n \geq n_0}$ where $n_0 \in \mathbb{N}$.
  • $U_n$ is the general term, and $U_0, U_1, U_2,...$ are the terms of the sequence.

Modes de Génération d'une Suite

  • Explicite: $U_n = f(n)$ for all $n \in \mathbb{N}$.
    • Example: $U_n = n^2 + 1$, $U_n = \frac{2n}{n+1}$.
  • Par récurrence: $U_0$ and a relation $U_{n+1} = f(U_n)$ for all $n \in \mathbb{N}$ are given.
    • Example: $U_0 = 2$ and $U_{n+1} = 3U_n - 1$.

Variations d'une Suite

  • $(U_n)$ is increasing if $U_{n+1} \geq U_n$ for all $n \in \mathbb{N}$.
  • $(U_n)$ is strictly increasing if $U_{n+1} > U_n$ for all $n \in \mathbb{N}$.
  • $(U_n)$ is decreasing if $U_{n+1} \leq U_n$ for all $n \in \mathbb{N}$.
  • $(U_n)$ is strictly decreasing if $U_{n+1} < U_n$ for all $n \in \mathbb{N}$.
  • $(U_n)$ is constant if $U_{n+1} = U_n$ for all $n \in \mathbb{N}$.

Méthodes pour Étudier les Variations d'une Suite

  • Calculate $U_{n+1} - U_n$ and study its sign.
  • If $U_n > 0$, calculate $\frac{U_{n+1}}{U_n}$ and compare to 1.
  • If $U_n = f(n)$, study the variations of the function $f$.

Suites Majorées, Minorées, Bornées

  • $(U_n)$ is majorée if there exists a real $M$ such that $U_n \leq M$ for all $n \in \mathbb{N}$.
  • $(U_n)$ is minorée if there exists a real $m$ such that $U_n \geq m$ for all $n \in \mathbb{N}$.
  • $(U_n)$ is bornée if it is majorée and minorée.
  • $(U_n)$ is bornée if and only if there exists a real $k > 0$ such that $|U_n| \leq k$ for all $n \in \mathbb{N}$.

Limites d'une Suite

  • $\lim_{n \to +\infty} U_n = l$ if every open interval containing $l$ contains all values of $U_n$ from a certain rank.
  • $\lim_{n \to +\infty} U_n = +\infty$ if every interval of the form $]A; +\infty[$ contains all values of $U_n$ from a certain rank.
  • $\lim_{n \to +\infty} U_n = -\infty$ if every interval of the form $]-\infty; A[$ contains all values of $U_n$ from a certain rank.
  • If a sequence $(U_n)$ has a limit, then that limit is unique.

Opérations sur les Limites

  • If $\lim U_n = l$ and $\lim V_n = l'$ then $\lim (U_n + V_n) = l + l'$ and $\lim (U_n \times V_n) = l \times l'$
  • If $\lim U_n = l$ and $\lim V_n = l'$ then $\lim (\frac{U_n}{V_n}) = \frac{l}{l'}$ if $l' \neq 0$.
  • If $\lim U_n = l$ and $\lim V_n = +\infty$ then $\lim (U_n + V_n) = +\infty$
  • If $\lim U_n = l$ and $\lim V_n = +\infty$ then $\lim (U_n \times V_n) = +\infty$ if $l > 0$ and $\lim (\frac{U_n}{V_n}) = 0$.
  • If $\lim U_n = l$ and $\lim V_n = -\infty$ then $\lim (U_n + V_n) = -\infty$.
  • If $\lim U_n = l$ and $\lim V_n = -\infty$ then $\lim (U_n \times V_n) = -\infty$ if $l > 0$ and $\lim (\frac{U_n}{V_n}) = 0$.

Limites et Comparaison

  • Si $U_n \leq V_n$ et $\lim_{n \to +\infty} U_n = +\infty$, alors $\lim_{n \to +\infty} V_n = +\infty$.
  • Si $U_n \geq V_n$ et $\lim_{n \to +\infty} U_n = -\infty$, alors $\lim_{n \to +\infty} V_n = -\infty$.
  • Si $V_n \leq U_n \leq W_n$ et $\lim_{n \to +\infty} V_n = \lim_{n \to +\infty} W_n = l$, alors $\lim_{n \to +\infty} U_n = l$.
  • Si $\lim_{n \to +\infty} U_n = l$ et $f$ is continue en $l$, alors $\lim_{n \to +\infty} f(U_n) = f(l).

Suites Monotones

  • Toute suite croissante et majorée converge.
  • Toute suite décroissante et minorée converge.
  • Toute suite croissante non majorée diverge vers $+\infty$.
  • Toute suite décroissante non minorée diverge vers $-\infty$.

Suites Arithmétiques

  • $U_{n+1} = U_n + r$ where $r$ is the reason.
  • $U_n = U_0 + nr$.
  • $U_n = U_p + (n-p)r$.
  • $S_n = U_0 + U_1 +... + U_n = (n+1) \frac{U_0 + U_n}{2}$.
  • $S_n = U_1 + U_2 +... + U_n = n \frac{U_1 + U_n}{2}$.

Limites des Suites Arithmétiques

  • Si $r > 0$, alors $\lim_{n \to +\infty} U_n = +\infty$.
  • Si $r < 0$, alors $\lim_{n \to +\infty} U_n = -\infty$.
  • Si $r = 0$, alors $\lim_{n \to +\infty} U_n = U_0$.

Suites géométriques

  • $U_{n+1} = q U_n$ where $q$ is the reason.
  • $U_n = U_0 q^n$.
  • $U_n = U_p q^{n-p}$.
  • $S_n = U_0 + U_1 +... + U_n = U_0 \frac{1 - q^{n+1}}{1 - q}$ si $q \neq 1$.
  • $S_n = U_1 + U_2 +... + U_n = U_1 \frac{1 - q^n}{1 - q}$ si $q \neq 1$.

Limites des Suites géométriques

  • Si $q > 1$, alors $\lim_{n \to +\infty} q^n = +\infty$.
  • Si $q = 1$, alors $\lim_{n \to +\infty} q^n = 1$.
  • Si $-1 < q < 1$, alors $\lim_{n \to +\infty} q^n = 0$.
  • Si $q \leq -1$, la suite $(q^n)$ n'a pas de limite.

Chapter 4: Applications of Derivatives

  • Strategy: Read, Draw, Introduce notation, Express given info/required rate in derivatives, Write equation, Chain Rule, Substitute given info

Examples

Ex 1.

  • Air is pumped into a spherical balloon.
  • Volume increases: $\frac{dV}{dt} = 100 \mathrm{~cm}^3/s$.
  • Find radius increase $\frac{dr}{dt}$ when $d = 50$ cm ($r = 25$ cm).
  • Equation: $V = \frac{4}{3} \pi r^3$.
  • Derivative: $\frac{dV}{dt} = 4 \pi r^2 \frac{dr}{dt}$.
  • Solution: $\frac{dr}{dt} = \frac{1}{25 \pi} \mathrm{cm}/s$.

Ex 2.

  • Ladder 10 ft long against a wall.
  • Bottom slides away: $\frac{dx}{dt} = 1$ ft/s.
  • Find top sliding down $\frac{dy}{dt}$ when $x = 6$ ft.
  • Equation: $x^2 + y^2 = 10^2$.
  • Derivative: $x \frac{dx}{dt} + y \frac{dy}{dt} = 0$.
  • When $x = 6$, $y = 8$.
  • Solution: $\frac{dy}{dt} = -\frac{3}{4}$ ft/s.

Ex 3.

  • Water tank is an inverted cone.
  • Base radius 2 m, height 4 m.
  • Water pumped in: $\frac{dV}{dt} = 2 \mathrm{~m}^3/\mathrm{min}$.
  • Find water level rising $\frac{dh}{dt}$ when $h = 3$ m.
  • Equation: $V = \frac{1}{3} \pi r^2 h$, $r = \frac{1}{2} h$, $V = \frac{\pi}{12} h^3$.
  • Derivative: $\frac{dV}{dt} = \frac{\pi}{4} h^2 \frac{dh}{dt}$.
  • Solution: $\frac{dh}{dt} = \frac{8}{9 \pi} \mathrm{m}/\mathrm{min}$.

Ex 4.

  • Car A travels west: 50 mi/h ($\frac{da}{dt} = -50$).
  • Car B travels north: 60 mi/h ($\frac{db}{dt} = -60$).
  • Find approaching rate $\frac{dc}{dt}$ when $a = 0.3$ mi, $b = 0.4$ mi.
  • Equation: $c^2 = a^2 + b^2$.
  • Derivative: $c \frac{dc}{dt} = a \frac{da}{dt} + b \frac{db}{dt}$.
  • When $a = 0.3$, $b = 0.4$, $c = 0.5$.
  • Solution: $\frac{dc}{dt} = -78$ mi/h.

Préparation à l'Agrégation Externe de Mathématiques

Analyse

Exercice 1

  • Soit $f \in C([0, 1], \mathbb{R})$.
  • Calculer $\lim_{n \to \infty} \int_{0}^{1} f(t^n) dt$.

Exercice 2

  • Soit $f : \mathbb{R} \to \mathbb{R}$ uniformément continue.
  • Montrer que : $\lim_{n \to \infty} \int_{0}^{1} f(x + n) dx = 0$.

Exercice 3

  • Soit $f : [0, +\infty[ \to \mathbb{R}$ continue et bornée.
  • Montrer que : $\lim_{x \to +\infty} \frac{1}{x} \int_{0}^{x} f(t) dt$ existe.

Exercice 4

  • Étudier la convergence de l'intégrale $\int_{0}^{+\infty} \frac{\sin(t)}{t} dt$.

Exercice 5

  • Étudier la convergence de l'intégrale $\int_{0}^{+\infty} \sin(t^2) dt$.

Exercice 6

  • Montrer que $\int_{0}^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

Exercice 7

  • Soit $f : \mathbb{R} \to \mathbb{R}$ continue telle que $f(x+1) = f(x)$ pour tout $x \in \mathbb{R}$.
  • Montrer que : $\lim_{n \to \infty} \int_{0}^{1} f(nx) dx = \int_{0}^{1} f(x) dx$.

Exercice 8

  • Soit $f : [0, 1] \to \mathbb{R}$ continue.
  • Calculer $\lim_{n \to \infty} \int_{0}^{1} x^n f(x) dx$.

Exercice 9

  • Soit $f : [0, 1] \to \mathbb{R}$ continue.
  • Calculer $\lim_{n \to \infty} n \int_{0}^{1} x^n f(x) dx$.

Exercice 10

  • Soit $f : [0, 1] \to \mathbb{R}$ continue.
  • Calculer $\lim_{n \to \infty} \int_{0}^{1} \frac{f(x)}{1 + x^n} dx$

Lecture 11 - Secure Computation

Definition

  • Alice has input x, Bob has input y, computing f(x, y).
  • Correctness: Discovering correct function value.
  • Privacy: Minimal Input Information Leakage

Example

  • Alice & Bob - Who's richer? - without disclosing income

Yao's Protocol

Securely compute functions using boolean circuits, avoiding input reveals.

  • Secure against semi-honest adversaries.
  • Alice and Bob want to compute $f(x, y)$, where x is Alice's input, y is Bob's input

Alice's part

  • Express $f$ as boolean circuit $C$
  • For wire $i$, choose two random keys $K_{i}^{0}, K_{i}^{1}$ = values 0, 1 of wire $i$.
  • Alice encrypts the truth table of the gate, using the keys corresponding to the gate's input wires to encrypt the keys corresponding to the gate's output wire.
  • Alice sends the encrypted circuit to Bob, as well as the keys corresponding to her input wires.

Bob's part

  • Getting keys corresponding to the inputs to Alice.
  • Gate Evaluations: The preservation of privacy comes from knowing a key

Yao's Protocol - Example

  • $f(x, y) = x \land y$
    • AND Gate Circuit
  • Use the alice part protocol discussed before

Homework

  • Prove the protocol is secure against semi-honest adversaries
  • Consider $f(x_1, x_2,..., x_n) = \sum_{i=1}^{n} x_i \mod 2$
    • Construct the computing circle
    • determine the circuit size = function n

Static Electricity

Electric Charge

  • Two Types of Charge: Positive and Negative
  • Like Charges Repel.
  • Opposite Charges Attract.

Conductors

  • Materials that allow electrons to move freely are conductors
    • Examples: Metals like copper, aluminum, and gold
    • Also includes: Salt water

Insulators

  • Materials that do not allow electrons to move freely are insulators.
    • Examples: Rubber, Glass, Wood, Plastic

Charging

Friction

  • Rubbing two neutral objects together facilitating electron transfer

Conduction

  • Charging an object with existing charge through touching

Induction

  • Charging a neutral object by bringing near a charged one

Electric Force

Coulomb's Law

  • $F$ = Electric Force (N)
    • $k$ = Coulomb's Constant $(9.0 \times 10^9 \frac{N \cdot m^2}{C^2})$
    • $q_1$ = Charge of object 1 (C)
    • $q_2$ = Charge of object 2 (C)
    • $d$ = distance between objects (m)
  • The electric force between two objects is proportional to the product of the charges and inversely proportional to the square of the distance.

Electric Fields

Definition

A region around a charged object where a force would be exerted on another charged object.

Direction

  • The direction of the force on a positive test charge.

Field Lines

 - Positive = Point away
 - Negative = Point towards
 - Closer lines = Stronger field

Física

Vectores

Definición

  • Un vector es un segmento de recta orientado.
    • Módulo: Es la longitud del vector.
    • Dirección: Es la recta que contiene al vector.
    • Sentido: Es la orientación del vector dentro de la dirección.
    • Punto de aplicación: Es el origen del vector.

Tipos de vectores

  • Vectores iguales: Mismo módulo, dirección y sentido.
  • Vectores opuestos: Mismo módulo y dirección, pero sentido contrario.
  • Vectores unitarios: Su módulo es igual a 1.
  • Vectores concurrentes: Sus rectas de acción se cortan en un punto.
  • Vectores coplanarios: Están contenidos en el mismo plano.
  • Vectores colineales: Están contenidos en la misma recta.

Operaciones con vectores

Suma de vectores
Método gráfico
  • Método del triángulo: Unir origen del primer vector con extremo del último.
  • Método del paralelogramo: Diagonal del paralelogramo que parte del origen.
  • Método del polígono: Unir origen del primer vector con extremo del último.
Método analítico
  • $\vec{A} = (A_x, A_y)$
  • $\vec{B} = (B_x, B_y)$
  • $\vec{A} + \vec{B} = (A_x + B_x, A_y + B_y)$
Resta de vectores
  • $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$
Producto de un escalar por un vector
  • $k \cdot \vec{A} = (k \cdot A_x, k \cdot A_y)$
Producto escalar de dos vectores
  • $\vec{A} \cdot \vec{B} = |\vec{A}| \cdot |\vec{B}| \cdot \cos{\theta}$
  • $\vec{A} \cdot \vec{B} = A_x \cdot B_x + A_y \cdot B_y$
Producto vectorial de dos vectores
  • $|\vec{A} \times \vec{B}| = |\vec{A}| \cdot |\vec{B}| \cdot \sin{\theta}$
  • $\vec{A} \times \vec{B} = (A_y \cdot B_z - A_z \cdot B_y, A_z \cdot B_x - A_x \cdot B_z, A_x \cdot B_y - A_y \cdot B_x)$

Versores

  • Vectores unitarios que indican la dirección de los ejes de coordenadas.
    • $\hat{i}$: Versor del eje x.
    • $\hat{j}$: Versor del eje y.
    • $\hat{k}$: Versor del eje z.
  • $\vec{A} = A_x \cdot \hat{i} + A_y \cdot \hat{j} + A_z \cdot \hat{k}$

Cinemática

Definiciones

  • Posición: Lugar que ocupa un cuerpo en el espacio.
  • Trayectoria: Conjunto de posiciones que ocupa un cuerpo.
  • Desplazamiento: Variación de la posición de un cuerpo.
  • Velocidad: Variación de la posición en función del tiempo.
  • Aceleración: Variación de la velocidad en función del tiempo.

Tipos de movimiento

  • Movimiento rectilíneo uniforme (MRU): Velocidad constante.
    • $v = \frac{\Delta x}{\Delta t}$
    • $x = x_0 + v \cdot t$
  • Movimiento rectilíneo uniformemente variado (MRUV): Aceleración constante.
    • $a = \frac{\Delta v}{\Delta t}$
    • $v = v_0 + a \cdot t$
    • $x = x_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$
    • $v^2 = v_0^2 + 2 \cdot a \cdot \Delta x$
  • Movimiento circular uniforme (MCU): Velocidad angular constante.
    • $\omega = \frac{\Delta \theta}{\Delta t}$
    • $\theta = \theta_0 + \omega \cdot t$
    • $v = \omega \cdot r$
    • $a_c = \frac{v^2}{r} = \omega^2 \cdot r$
  • Movimiento armónico simple (MAS): Movimiento periódico con variación sinusoidal.
    • $x = A \cdot \cos{(\omega \cdot t + \phi)}$
    • $v = -A \cdot \omega \cdot \sin{(\omega \cdot t + \phi)}$
    • $a = -A \cdot \omega^2 \cdot \cos{(\omega \cdot t + \phi)}$
    • $\omega = \sqrt{\frac{k}{m}}$
    • $T = \frac{2\pi}{\omega}$
    • $f = \frac{1}{T}$

Tiro oblicuo

  • MRU en el eje x y MRUV en el eje y.
    • $v_{0x} = v_0 \cdot \cos{\alpha}$
    • $v_{0y} = v_0 \cdot \sin{\alpha}$
    • $x = v_{0x} \cdot t$
    • $y = v_{0y} \cdot t - \frac{1}{2} \cdot g \cdot t^2$
    • $t_{max} = \frac{v_{0y}}{g}$
    • $x_{max} = \frac{v_0^2 \cdot \sin{2\alpha}}{g}$
    • $y_{max} = \frac{v_{0y}^2}{2g}$

Dinámica

Leyes de Newton

  • Primera ley: Inercia.
  • Segunda ley: $\sum \vec{F} = m \cdot \vec{a}$
  • Tercera ley: Acción y reacción.

Tipos de fuerzas

  • Peso: $P = m \cdot g$
  • Normal: Fuerza de una superficie sobre un cuerpo.
  • Tensión: Fuerza de una cuerda o cable.
  • Fuerza de rozamiento: $F_r = \mu \cdot N$
  • Fuerza elástica: $F = k \cdot \Delta x$

Trabajo

  • $W = \vec{F} \cdot \vec{d} = |\vec{F}| \cdot |\vec{d}| \cdot \cos{\theta}$

Energía

  • Energía cinética: $E_c = \frac{1}{2} \cdot m \cdot v^2$
  • Energía potencial gravitatoria: $E_p = m \cdot g \cdot h$
  • Energía potencial elástica: $E_p = \frac{1}{2} \cdot k \cdot \Delta x^2$
  • Energía mecánica: $E_m = E_c + E_p$

Teorema del trabajo y la energía

  • $W = \Delta E_c$

Conservación de la energía mecánica

  • $\Delta E_m = 0$

Potencia

  • $P = \frac{W}{\Delta t}$

Estática

Definiciones

  • Momento de una fuerza: $M = \vec{r} \times \vec{F} = |\vec{r}| \cdot |\vec{F}| \cdot \sin{\theta}$
  • Cupla: Sistema de dos fuerzas iguales, opuestas y paralelas.

Condiciones de equilibrio

  • $\sum \vec{F} = 0$
  • $\sum \vec{M} = 0$

Hidrostática

Definiciones

  • Presión: $P = \frac{F}{A}$
  • Densidad: $\rho = \frac{m}{V}$
  • Peso específico: $\gamma = \frac{P}{V} = \rho \cdot g$

Teorema fundamental de la hidrostática

  • $P_2 - P_1 = \gamma \cdot (h_1 - h_2)$

Presión atmosférica

  • $P_{atm} = 101325 Pa = 1 atm$

Principio de Arquímedes

  • $E = \gamma \cdot V_{sumergido}$

Termodinámica

Definiciones

  • Temperatura: Energía interna de un sistema.
  • Calor: Transferencia de energía térmica.
  • Trabajo: Transferencia de energía por desplazamiento.
  • Energía interna: Energía total de un sistema.
  • Entalpía: Energía que un sistema puede intercambiar con su entorno.
  • Entropía: Medida del desorden de un sistema.

Leyes de la termodinámica

  • Ley cero: Equilibrio térmico.
  • Primera ley: $\Delta U = Q - W$
  • Segunda ley: La entropía siempre aumenta.
  • Tercera ley: La entropía tiende a un mínimo a medida que T se aproxima al cero absoluto.

Tipos de procesos termodinámicos

  • Proceso isotérmico: Temperatura constante.
  • Proceso isobárico: Presión constante.
  • Proceso isocórico: Volumen constante.
  • Proceso adiabático: Sin transferencia de calor.

Gases ideales

  • $P \cdot V = n \cdot R \cdot T$

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Exploring Vector Spaces in Linear Algebra
10 questions
Vector Spaces and Axioms
17 questions
Vector Spaces Flashcards (Linear Algebra)
15 questions
Use Quizgecko on...
Browser
Browser