Understanding the RAG Process
10 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

The RAG process involves five distinct steps.

False

The user query is converted into a numeric format using a different model than the one used in the ingestion phase.

False

The system retrieves the top-K documents or passages with the lowest similarity to the query vector.

False

The RAG process is a three-step process.

<p>False</p> Signup and view all the answers

The embedding model is used to convert the user query into a natural language format.

<p>False</p> Signup and view all the answers

The user query is posed directly to the knowledge base.

<p>False</p> Signup and view all the answers

The RAG process involves the retrieval of contextual documents from an internal dataset.

<p>False</p> Signup and view all the answers

The system generates a response based on the original input only.

<p>False</p> Signup and view all the answers

The knowledge base is created during the RAG process.

<p>False</p> Signup and view all the answers

The similarity between the query vector and vectors in the knowledge base is measured using Euclidean distance.

<p>False</p> Signup and view all the answers

Study Notes

RAG Process Overview

  • The RAG process consists of four steps: Retrieval, Augmentation, Generation, and Response.
  • The process is designed to provide informed responses to user queries by leveraging external contextual documents.

Step 1: Retrieval

  • Contextual documents are retrieved from an external dataset.
  • The retrieval process is based on the similarity between the user query and the documents in the dataset.

User Query and Conversion

  • A user poses a natural language query to the LLM (e.g., "Tell me about the Renaissance period").
  • The query is converted into a numeric format using an embedding model, creating a vector representation.
  • The embedding model used for query conversion is the same as the one used for article embedding in the ingestion phase.

Vector Comparison and Retrieval

  • The query vector is compared to vectors in the knowledge base index using similarity or distance metrics (e.g., cosine similarity).
  • The system retrieves the top-K documents or passages with the highest similarity to the query vector.

Remaining Steps

  • Augmentation: The retrieved documents are integrated with the original input to enrich the context.
  • Generation: The model generates a response based on the augmented input.
  • Response: The informed response, influenced by the retrieved contextual documents, is delivered to the user.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Learn about the RAG process which involves retrieval, augmentation, generation, and response steps in natural language processing. Explore how contextual documents are integrated to enhance responses in models like LLM.

More Like This

Use Quizgecko on...
Browser
Browser