Trigonometry: Basic Functions and Applications Quiz
10 Questions
2 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

साइन और कोसाइन फ़ंक्शन के वर्गों का योग $1$ होता है, यह सिद्ध करता है कि:

  • कोई समीकरण संबंधित नहीं होता है
  • कोसाइन फ़ंक्शन की वर्ग मान $1$ होती है
  • त्रिकोणमिति से कोई सम्बन्ध नहीं होता है
  • साइन फ़ंक्शन की वर्ग मान $1$ होती है (correct)
  • साइन (sin) एक कोण की लम्बाई के विपरीत सिद्धांत के रूप में किसे प्रतिष्ठित किया गया है?

  • हाइपरबोली
  • परिसंख्या
  • विपरीत परिसंख्या (correct)
  • समकोणी त्रिभुज
  • त्रिकोणमिति के प्रमुख सूत्रों में से किसे 'प्रतिलोम' कहा जाता है?

  • प्रतिलोम साइन, प्रतिलोम कोसाइन, और प्रतिलोम कोसेकेंट
  • साइन, कोसाइन, और टेंजेंट
  • प्रतिलोम साइन, प्रतिलोम कोसाइन, और प्रतिलोम टेंजेंट (correct)
  • प्रतिलोम साइन, प्रतिलोम कोसाइन, और प्रतिलोम कोटेंजेंट
  • कोसाइन (cos) किसके बराबर है?

    <p>समकोणी त्रिभुज की परिसंख्या</p> Signup and view all the answers

    किन श्रेणियों में त्रिकोणमिति की अनेक अनुप्रयोग होते हैं?

    <p>कंप्यूटर, अर्थशास्त्र, इंजीनियरिंग</p> Signup and view all the answers

    त्रिकोणमिति किस लेखक द्वारा प्रारंभ की गई थी?

    <p>प्य्थागोरस</p> Signup and view all the answers

    पूल की डिज़ाइन में कहाँ-कहाँ पर त्रिकोणमिति का प्रयोग होता है?

    <p>पूल की मंडप, चौड़ाई, स्तंभ, पीलर</p> Signup and view all the answers

    कौन-सी त्रिभुज के साइन (sin) 1 होता है?

    <p>45-45-90 त्रिभुज</p> Signup and view all the answers

    महत्वपूर्ण है कि $a^2 + b^2 = c^2$ में $a$ और $b$ क्या होते हैं?

    <p>समकोणी त्रिभुज के पुर्वपुरु</p> Signup and view all the answers

    $sin^2x + cos^2x = 1$ का महत्व क्या है?

    <p>$sin x$ और $cos x$ के पुनरावर्ती सुत्र</p> Signup and view all the answers

    Study Notes

    Math: A Comprehensive Guide to Trigonometry

    Trigonometry, derived from the Greek words "trigōn" (triangle) and "mētrē" (measure), is a branch of mathematics that deals with the relationships between the sides and angles of triangles. It has applications in various fields, including physics, engineering, computer science, and economics[1,2]. In this article, we will explore trigonometry, its applications, and some of the key concepts related to trigonometric functions.

    Basic Trigonometric Functions

    The basic trigonometric functions are sine (sin), cosine (cos), and tangent (tan). These functions are ratios of the sides of a right triangle, with sine being the ratio of the length of the opposite side to the length of the hypotenuse, cosine being the ratio of the length of the adjacent side to the hypotenuse, and tangent being the ratio of the length of the opposite side to the length of the adjacent side.

    1. Sine (sin): The sine of an angle is the ratio of the length of the opposite side to the length of the hypotenuse. Mathematically, the sine of angle θ is represented as sin(θ).

    2. Cosine (cos): The cosine of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. Mathematically, it is represented as cos(θ).

    3. Tangent (tan): The tangent of an angle is the ratio of the length of the opposite side to the length of the adjacent side. Mathematically, it is represented as tan(θ).

    Trigonometric Formulas and Identities

    Trigonometry has various formulas and identities that help in understanding and solving trigonometric problems. Some of the key formulas and identities include:

    • The Pythagorean theorem: a² + b² = c², where a and b are the lengths of the legs and c is the length of the hypotenuse.

    • The trigonometric functions are periodic and follow the unit circle.

    • The sum of the squares of the sine and cosine functions is equal to 1.

    • The sine, cosine, and tangent functions are periodic and follow the unit circle.

    • The trigonometric functions can be expressed in terms of the exponential function.

    • The fundamental trigonometric formulas include the inverse trigonometric functions.

    Applications of Trigonometry

    Trigonometry has numerous applications in various fields, including:

    1. Physics: Trigonometry is used to describe the motion of objects, including waves and their properties.

    2. Engineering: Trigonometry is used in the design and analysis of structures, such as bridges and buildings, as well as in the development of electronic circuits and communication systems.

    3. Computer Science: Trigonometry is used in computer graphics, image processing, and computer vision for tasks like rotations and projecting 3D objects onto 2D screens.

    4. Economics: Trigonometry is used in economics to analyze the relationships between different variables, such as supply and demand, and to develop economic models.

    In conclusion, trigonometry is a fundamental branch of mathematics with wide-ranging applications in various fields. Understanding trigonometric functions, formulas, and identities is essential for solving problems in physics, engineering, computer science, and economics. With its rich history and numerous applications, trigonometry continues to be a vital part of mathematical knowledge.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Test your knowledge of trigonometry with this comprehensive quiz on basic trigonometric functions, formulas, and applications in physics, engineering, computer science, and economics.

    More Like This

    Use Quizgecko on...
    Browser
    Browser