Podcast
Questions and Answers
If $ an heta = rac{12}{5}$, what expression can be proved equal to $rac{7}{17}$?
If $ an heta = rac{12}{5}$, what expression can be proved equal to $rac{7}{17}$?
If $ an heta = rac{1}{2}$, what is the value of $rac{ an heta + an^2 heta}{ an heta + 1}$?
If $ an heta = rac{1}{2}$, what is the value of $rac{ an heta + an^2 heta}{ an heta + 1}$?
If $rac{3 an A - 4 an^2 A}{ an A}$ = 0, what can be concluded about $ an A$?
If $rac{3 an A - 4 an^2 A}{ an A}$ = 0, what can be concluded about $ an A$?
Given $ an heta = rac{20}{21}$, how can $rac{1+ an heta}{1- an heta}$ be simplified?
Given $ an heta = rac{20}{21}$, how can $rac{1+ an heta}{1- an heta}$ be simplified?
Signup and view all the answers
If $ an heta = rac{1}{ an heta}$, which of the following statements is true?
If $ an heta = rac{1}{ an heta}$, which of the following statements is true?
Signup and view all the answers
If $ an heta = rac{1}{ an heta}$, what is $ an^2 heta$ equal to?
If $ an heta = rac{1}{ an heta}$, what is $ an^2 heta$ equal to?
Signup and view all the answers
If $ an A = rac{3}{4}$, what expression evaluates to $rac{3}{7}$?
If $ an A = rac{3}{4}$, what expression evaluates to $rac{3}{7}$?
Signup and view all the answers
What is true if $ an A = rac{1}{ an A}$?
What is true if $ an A = rac{1}{ an A}$?
Signup and view all the answers
Study Notes
Trigonometric Ratios
-
If tan θ = a/b, then (sin θ - b cos θ) / (sin θ + b cos θ) = (a² - b²) / (a² + b²)
-
If sin θ = 13/12, evaluate (2 sin θ - 3 cos θ) / (4 sin θ - 9 cos θ)
-
If tan θ = 1/2, evaluate (cos θ + sin θ) / (sin θ + 1 + cos θ)
-
If sin α = 1/2, prove (3 cos α - 4 cos² α) = 0
-
If 3 cot θ = 2, prove (4 sin θ - 3 cos θ) / (2 sin θ + 6 cos θ) = 1/3
-
If sec θ = 17/8, prove 3 - 4 sin² θ = 3 - tan² θ / 4 cos² θ - 1
-
If tan θ = 20/21, prove (1 - sin θ + cos θ) / (1 + sin θ + cos θ) = 3/7
-
If tan θ = 1/√7, prove (cosec² θ + sec² θ) / (cosec² θ - sec² θ) = 4/3
-
If sin θ = 3/4, prove cosec² θ - cot² θ / sec θ - 1 = √7/3
-
If 3 tan A = 4, prove (i) (sec A - cosec A) / (sec A + cosec A) = 1/√7 and (ii) (1 - sin A) / (1 + cos A) = 1/2√2
-
If cot θ = 15/8, evaluate (1 + sin θ)(1 - sin θ) / (1 + cos θ)(1 - cos θ)
-
In ΔABC, if ∠B = 90° and tan A = 1, prove 2 sin A cos A = 1
-
In rectangle ABCD, diagonal AC = 17 cm, ∠BCA = θ, sin θ = 8/17. Find (i) area of ABCD, (ii) perimeter of ABCD
-
If x = cosec A + cos A and y = cosec A - cos A, prove (x²/2) + (y²/2) / (x + y) = 1
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Test your understanding of trigonometric ratios and identities with this quiz. It includes various proofs and evaluations based on fundamental trigonometric principles. Challenge yourself with problems involving sine, cosine, tangent, and cotangent.