Trigonometric Pythagorean Identities Quiz

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Which trigonometric identity can be used to simplify the expression $2 ext{sin}^2x + 2 ext{cos}^2x$?

  • $ ext{tan}^2x$
  • $ ext{sin}^2x + ext{cos}^2x$
  • $1$ (correct)
  • $2$

Which Pythagorean identity can be used to prove the equation $ ext{tan}^2x + 1 = ext{sec}^2x$?

  • $ ext{sin}^2x + ext{cos}^2x = 1$ (correct)
  • $ ext{csc}^2x = ext{cot}^2x + 1$
  • $ ext{tan}^2x = ext{sec}^2x - 1$
  • $ ext{sin}^2x = 1 - ext{cos}^2x$

Which of the following is a Pythagorean identity?

  • $rac{ ext{cos}x}{1 + ext{sin}x}$
  • $ ext{sin}^2x - ext{cos}^2x$
  • $rac{ ext{sin}x}{ ext{cos}x}$
  • $1 - ext{cot}^2x$ (correct)

What is the simplified form of the expression $rac{ ext{cot}^2x - 1}{ ext{cot}^2x + 1}$ using Pythagorean identities?

<p>$0$ (A)</p> Signup and view all the answers

Flashcards are hidden until you start studying

Study Notes

Trigonometric Identities and Simplifications

  • The expression (2\text{sin}^2x + 2\text{cos}^2x) can be simplified using the identity ( \text{sin}^2x + \text{cos}^2x = 1 ).
  • By factoring out 2, the expression simplifies to (2(\text{sin}^2x + \text{cos}^2x) = 2 \cdot 1 = 2).

Proving Pythagorean Identity

  • The identity ( \text{tan}^2x + 1 = \text{sec}^2x) can be proven using the fundamental Pythagorean identity ( \text{sin}^2x + \text{cos}^2x = 1 ).
  • Since ( \text{tan}x = \frac{\text{sin}x}{\text{cos}x} ) and ( \text{sec}x = \frac{1}{\text{cos}x} ), the relationship holds when applying definitions of tangent and secant.

Recognizing Pythagorean Identities

  • A key Pythagorean identity includes:
    • ( \text{sin}^2x + \text{cos}^2x = 1 )
    • Other derived forms involve transformations of this identity.

Simplification of Cotangent Expression

  • The expression ( \frac{\text{cot}^2x - 1}{\text{cot}^2x + 1} ) can be simplified using Pythagorean identities.
  • Recognizing that ( \text{cot}^2x = \frac{\text{cos}^2x}{\text{sin}^2x} ) leads to simplifying the expression to ( \frac{\text{cos}^2x - \text{sin}^2x}{\text{cos}^2x + \text{sin}^2x} ).
  • This simplifies further to ( \frac{\text{cos}^2x - \text{sin}^2x}{1} = \text{cos}^2x - \text{sin}^2x ).

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Use Quizgecko on...
Browser
Browser