Trigonometric Identities
13 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the formula for cos(A + B)?

  • sin A cos B + cos A sin B
  • sin A sin B - cos A cos B
  • cos A cos B + sin A sin B
  • cos A cos B - sin A sin B (correct)
  • The formula sin(π/2-A) = cos A is always true.

    True

    What is the formula for tan(A+B)?

    [(tan A + tan B)/(1 – tan A tan B)]

    The formula for sin(A -B) is _______.

    <p>sin A cos B – cos A sin B</p> Signup and view all the answers

    Match the following trigonometric identities with their formulas:

    <p>sin2A = 2sinA cosA cos2A = cos2A–sin2A tan2A = (2 tan A)/(1-tan2A)</p> Signup and view all the answers

    What is the formula for cos3A?

    <p>4cos3A – 3cosA</p> Signup and view all the answers

    What is the value of sin(π-A) in terms of sin A?

    <p>sin A</p> Signup and view all the answers

    The formula tan(A+B) = [(tan A + tan B)/(1 + tan A tan B)] is always true.

    <p>False</p> Signup and view all the answers

    What is the formula for cos2A in terms of sin A and cos A?

    <p>cos2A = cos2A–sin2A = 1–2sin2A = 2cos2A–1</p> Signup and view all the answers

    The formula sin(A+B) sin(A–B) = _______

    <p>sin2A–sin2B=cos2B–cos2A</p> Signup and view all the answers

    What is the value of tan 2A in terms of tan A?

    <p>(2 tan A)/(1-tan2A)</p> Signup and view all the answers

    Match the following trigonometric identities with their formulas:

    <p>cos(A+B) cos(A–B) = cos2A–sin2B=cos2B–sin2A sin(A+B) sin(A–B) = sin2A–sin2B=cos2B–cos2A sin3A = 3sinA – 4sin3A cos3A = 4cos3A – 3cosA</p> Signup and view all the answers

    The formula sin(A+B) = sin A cos B + cos A sin B is always true.

    <p>True</p> Signup and view all the answers

    Study Notes

    Trigonometric Identities: Sum and Difference Formulas

    • cos(A + B) = cos A cos B – sin A sin B
    • cos(A – B) = cos A cos B + sin A sin B
    • sin(A+B) = sin A cos B + cos A sin B
    • sin(A -B) = sin A cos B – cos A sin B

    Complementary Angle Identities

    • sin(π/2-A) = cos A
    • cos(π/2-A) = sin A
    • sin(π-A) = sin A
    • cos(π-A) = -cos A
    • sin(π+A)=-sin A
    • cos(π+A)=-cos A
    • sin(2π-A) = -sin A
    • cos(2π-A) = cos A

    Tangent and Cotangent Identities

    • tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)] (if none of the angles A, B, and (A ± B) is an odd multiple of π/2)
    • tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)] (if none of the angles A, B, and (A ± B) is an odd multiple of π/2)
    • cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)] (if none of the angles A, B, and (A ± B) is a multiple of π)
    • cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)] (if none of the angles A, B, and (A ± B) is a multiple of π)

    Product Identities

    • cos(A+B) cos(A–B)=cos2A–sin2B=cos2B–sin2A
    • sin(A+B) sin(A–B) = sin2A–sin2B=cos2B–cos2A

    Sum-to-Product Identities

    • sinA+sinB = 2 sin (A+B)/2 cos (A-B)/2

    Double Angle Identities

    • sin2A = 2sinA cosA = [2tan A /(1+tan2A)]
    • cos2A = cos2A–sin2A = 1–2sin2A = 2cos2A–1= [(1-tan2A)/(1+tan2A)]
    • tan 2A = (2 tan A)/(1-tan2A)

    Triple Angle Identities

    • sin3A = 3sinA – 4sin3A
    • cos3A = 4cos3A – 3cosA
    • tan3A = [3tanA–tan3A]/[1−3tan2A]

    Trigonometric Identities: Sum and Difference Formulas

    • cos(A + B) = cos A cos B – sin A sin B
    • cos(A – B) = cos A cos B + sin A sin B
    • sin(A+B) = sin A cos B + cos A sin B
    • sin(A -B) = sin A cos B – cos A sin B

    Complementary Angle Identities

    • sin(π/2-A) = cos A
    • cos(π/2-A) = sin A
    • sin(π-A) = sin A
    • cos(π-A) = -cos A
    • sin(π+A)=-sin A
    • cos(π+A)=-cos A
    • sin(2π-A) = -sin A
    • cos(2π-A) = cos A

    Tangent and Cotangent Identities

    • tan(A+B) = [(tan A + tan B)/(1 – tan A tan B)] (if none of the angles A, B, and (A ± B) is an odd multiple of π/2)
    • tan(A-B) = [(tan A – tan B)/(1 + tan A tan B)] (if none of the angles A, B, and (A ± B) is an odd multiple of π/2)
    • cot(A+B) = [(cot A cot B − 1)/(cot B + cot A)] (if none of the angles A, B, and (A ± B) is a multiple of π)
    • cot(A-B) = [(cot A cot B + 1)/(cot B – cot A)] (if none of the angles A, B, and (A ± B) is a multiple of π)

    Product Identities

    • cos(A+B) cos(A–B)=cos2A–sin2B=cos2B–sin2A
    • sin(A+B) sin(A–B) = sin2A–sin2B=cos2B–cos2A

    Sum-to-Product Identities

    • sinA+sinB = 2 sin (A+B)/2 cos (A-B)/2

    Double Angle Identities

    • sin2A = 2sinA cosA = [2tan A /(1+tan2A)]
    • cos2A = cos2A–sin2A = 1–2sin2A = 2cos2A–1= [(1-tan2A)/(1+tan2A)]
    • tan 2A = (2 tan A)/(1-tan2A)

    Triple Angle Identities

    • sin3A = 3sinA – 4sin3A
    • cos3A = 4cos3A – 3cosA
    • tan3A = [3tanA–tan3A]/[1−3tan2A]

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Formulas for trigonometric functions such as sin, cos, and tan with angle additions and subtractions. Includes identities for special angles like π/2 and π.

    Use Quizgecko on...
    Browser
    Browser