Podcast
Questions and Answers
For what values of $ heta $ is $ an heta $ undefined, according to the given identities?
For what values of $ heta $ is $ an heta $ undefined, according to the given identities?
- $ heta = k \cdot 90^\circ $, where $ k $ is an odd integer (correct)
- $ heta = k \cdot 180^\circ $, where $ k $ is any integer
- $ heta = k \cdot 90^\circ $, where $ k $ is an even integer
- $ heta = k \cdot 90^\circ $, where $ k $ is any integer
Which of the following equations represents the Pythagorean identity?
Which of the following equations represents the Pythagorean identity?
- $ \sin^2 heta - \cos^2 heta = 1 $
- $ an^2 heta + \cos^2 heta = 1 $
- $ \sin^2 heta + \cos^2 heta = 1 $ (correct)
- $ an^2 heta - \sin^2 heta = 1 $
Given $ \cos^2 heta = 0.64 $, find $ \sin^2 heta $.
Given $ \cos^2 heta = 0.64 $, find $ \sin^2 heta $.
- 0.4
- 0.6
- 0.36 (correct)
- 0.8
Simplify the expression: $ \cos(90^\circ + heta) $.
Simplify the expression: $ \cos(90^\circ + heta) $.
Which of the following is equivalent to $ \cos(180^\circ - heta) $?
Which of the following is equivalent to $ \cos(180^\circ - heta) $?
Determine the equivalent expression for $ \sin(180^\circ + heta) $.
Determine the equivalent expression for $ \sin(180^\circ + heta) $.
What is $ an(180^\circ + heta) $ equal to?
What is $ an(180^\circ + heta) $ equal to?
Simplify: $ \sin(360^\circ - heta) $
Simplify: $ \sin(360^\circ - heta) $
If $ \sin heta = 0.5 $, what are the general solutions for $ heta $?
If $ \sin heta = 0.5 $, what are the general solutions for $ heta $?
Which rule should be used to find the area of a triangle when no height is given?
Which rule should be used to find the area of a triangle when no height is given?
In triangle $ ABC $, if $ a = 7 $, $ b = 10 $, and $ \angle C = 60^\circ $, which rule would you use to find side $ c $?
In triangle $ ABC $, if $ a = 7 $, $ b = 10 $, and $ \angle C = 60^\circ $, which rule would you use to find side $ c $?
Given two angles and one side of a triangle, which rule is most suitable for finding another side?
Given two angles and one side of a triangle, which rule is most suitable for finding another side?
Determine the value of the expression: $ \sin^2(75^\circ) + \cos^2(75^\circ) $.
Determine the value of the expression: $ \sin^2(75^\circ) + \cos^2(75^\circ) $.
Solve for $x$ in the equation: $2\sin^2(x) - 3\sin(x) + 1 = 0$, where $0^\circ \leq x \leq 360^\circ$.
Solve for $x$ in the equation: $2\sin^2(x) - 3\sin(x) + 1 = 0$, where $0^\circ \leq x \leq 360^\circ$.
Which of the following is equivalent to $ \sin(90^\circ + heta) $?
Which of the following is equivalent to $ \sin(90^\circ + heta) $?
What is the simplified form of the expression $ \cos(360^\circ - heta) $?
What is the simplified form of the expression $ \cos(360^\circ - heta) $?
If $ an heta = -1 $ and $ 90^\circ < heta < 180^\circ $, what is the value of $ heta $?
If $ an heta = -1 $ and $ 90^\circ < heta < 180^\circ $, what is the value of $ heta $?
What is the general solution for $ \sin heta = 1 $?
What is the general solution for $ \sin heta = 1 $?
Solve for $ heta $ in the equation $ 2\cos( heta) - 1 = 0 $, where $ 0^\circ \leq heta \leq 360^\circ $.
Solve for $ heta $ in the equation $ 2\cos( heta) - 1 = 0 $, where $ 0^\circ \leq heta \leq 360^\circ $.
If $ \sin( heta) = \cos( heta) $, what is a possible value of $ heta $ in degrees?
If $ \sin( heta) = \cos( heta) $, what is a possible value of $ heta $ in degrees?
Which expression is equivalent to $ \cos(180^\circ + heta) $?
Which expression is equivalent to $ \cos(180^\circ + heta) $?
If the sides of a triangle are $ a = 13 $, $ b = 15 $, and $ c = 14 $, find the area of the triangle.
If the sides of a triangle are $ a = 13 $, $ b = 15 $, and $ c = 14 $, find the area of the triangle.
Given $ \sin x + \cos x = \sqrt{2} $, evaluate $ \sin^3 x + \cos^3 x $.
Given $ \sin x + \cos x = \sqrt{2} $, evaluate $ \sin^3 x + \cos^3 x $.
In triangle $ ABC $, $ \angle A = 50^\circ $ and $ \angle B = 60^\circ $. If side $ a = 10 $ cm, find the length of side $ b $.
In triangle $ ABC $, $ \angle A = 50^\circ $ and $ \angle B = 60^\circ $. If side $ a = 10 $ cm, find the length of side $ b $.
What is the range of the function $ f(x) = 3\sin(2x) $?
What is the range of the function $ f(x) = 3\sin(2x) $?
If $ \sin^2 heta = 0.36 $, what is the value of $ \cos^2 heta $ based on the Pythagorean identity?
If $ \sin^2 heta = 0.36 $, what is the value of $ \cos^2 heta $ based on the Pythagorean identity?
What is the equivalent expression for $ \cos(180^\circ + heta) $?
What is the equivalent expression for $ \cos(180^\circ + heta) $?
For what condition of $ \cos heta $ is $ an heta $ undefined?
For what condition of $ \cos heta $ is $ an heta $ undefined?
Which of the following is a valid alternate form of the Pythagorean identity?
Which of the following is a valid alternate form of the Pythagorean identity?
Determine the simplified form of $ \sin(360^\circ + heta) $.
Determine the simplified form of $ \sin(360^\circ + heta) $.
Which reduction formula is used to express trigonometric functions of angles greater than $ 90^\circ $ in terms of acute angles?
Which reduction formula is used to express trigonometric functions of angles greater than $ 90^\circ $ in terms of acute angles?
In triangle $ ABC $, if $ \angle A = 30^\circ $, $ b = 8 $, and $ c = 5 $, what is the area of the triangle?
In triangle $ ABC $, if $ \angle A = 30^\circ $, $ b = 8 $, and $ c = 5 $, what is the area of the triangle?
If $ an heta = 1 $ and $ 0^\circ \leq heta \leq 360^\circ $, what are the possible values of $ heta $?
If $ an heta = 1 $ and $ 0^\circ \leq heta \leq 360^\circ $, what are the possible values of $ heta $?
Solve for $ heta $ in the equation $ 2\sin heta + \sqrt{3} = 0 $ for $ 0^\circ \leq heta \leq 360^\circ $.
Solve for $ heta $ in the equation $ 2\sin heta + \sqrt{3} = 0 $ for $ 0^\circ \leq heta \leq 360^\circ $.
Which rule would you use to find an unknown angle in a triangle when all three sides are known?
Which rule would you use to find an unknown angle in a triangle when all three sides are known?
Given $ \sin(x) = \cos(2x) $, find the value of $ x $ in the range $ 0^\circ \leq x \leq 90^\circ $.
Given $ \sin(x) = \cos(2x) $, find the value of $ x $ in the range $ 0^\circ \leq x \leq 90^\circ $.
If $ \sin heta + \cos heta = \sqrt{2} $, what is the value of $ an heta $?
If $ \sin heta + \cos heta = \sqrt{2} $, what is the value of $ an heta $?
According to the quotient identity, what expression is equivalent to $ \tan \theta $?
According to the quotient identity, what expression is equivalent to $ \tan \theta $?
Which of the following is an equivalent form of the Pythagorean identity $ \sin^2 \theta + \cos^2 \theta = 1 $?
Which of the following is an equivalent form of the Pythagorean identity $ \sin^2 \theta + \cos^2 \theta = 1 $?
Using reduction formulas, simplify $ \sin(90^\circ - \theta) $.
Using reduction formulas, simplify $ \sin(90^\circ - \theta) $.
What is the equivalent expression for $ \cos(180^\circ + \theta) $ using reduction formulas?
What is the equivalent expression for $ \cos(180^\circ + \theta) $ using reduction formulas?
What is $ \sin(- \theta) $ equivalent to?
What is $ \sin(- \theta) $ equivalent to?
If $ \cos \theta = 0.8 $, what is the value of $ \cos(360^\circ - \theta) $?
If $ \cos \theta = 0.8 $, what is the value of $ \cos(360^\circ - \theta) $?
What is the general solution for $ \cos \theta = 0 $?
What is the general solution for $ \cos \theta = 0 $?
In which quadrants is $ \sin \theta $ positive?
In which quadrants is $ \sin \theta $ positive?
Given two sides of a triangle and the included angle, which rule is used to find the third side?
Given two sides of a triangle and the included angle, which rule is used to find the third side?
If $ \tan(\theta) = -1 $ and $ 270^\circ < \theta < 360^\circ $, find the value of $ \theta $.
If $ \tan(\theta) = -1 $ and $ 270^\circ < \theta < 360^\circ $, find the value of $ \theta $.
Solve for $ \theta $ in the equation $ 2\sin(\theta) - 1 = 0 $ for $ 0^\circ \leq \theta \leq 360^\circ $.
Solve for $ \theta $ in the equation $ 2\sin(\theta) - 1 = 0 $ for $ 0^\circ \leq \theta \leq 360^\circ $.
Simplify $ \cos(90^\circ + \theta) + \cos(90^\circ - \theta) $.
Simplify $ \cos(90^\circ + \theta) + \cos(90^\circ - \theta) $.
If $ \sin x = \frac{1}{2} $ and $ \cos x = -\frac{\sqrt{3}}{2} $, in which quadrant does angle $ x $ lie?
If $ \sin x = \frac{1}{2} $ and $ \cos x = -\frac{\sqrt{3}}{2} $, in which quadrant does angle $ x $ lie?
Solve for $ x $ if $ \sin(2x) = \cos(x) $ in the interval $ 0^\circ \leq x \leq 90^\circ $.
Solve for $ x $ if $ \sin(2x) = \cos(x) $ in the interval $ 0^\circ \leq x \leq 90^\circ $.
Given $ \sin(x) = 0.6 $ and $ 0^\circ < x < 90^\circ $, find the value of $ \cos(x) $.
Given $ \sin(x) = 0.6 $ and $ 0^\circ < x < 90^\circ $, find the value of $ \cos(x) $.
Determine the general solution for $ \tan^2(\theta) = 1 $.
Determine the general solution for $ \tan^2(\theta) = 1 $.
A triangle has sides $ a = 5 $, $ b = 7 $, and $ c = 8 $. Find the cosine of the angle opposite side $ a $ (i.e., $ \cos A $).
A triangle has sides $ a = 5 $, $ b = 7 $, and $ c = 8 $. Find the cosine of the angle opposite side $ a $ (i.e., $ \cos A $).
Find $ \tan(x) $ given that $ \sin(x) + \cos(x) = \frac{7}{5} $ and $ 0 < x < \frac{\pi}{2} $.
Find $ \tan(x) $ given that $ \sin(x) + \cos(x) = \frac{7}{5} $ and $ 0 < x < \frac{\pi}{2} $.
Given that $ \sin \theta + \cos \theta = 1.2 $ find the value of $ \sin \theta \cdot \cos \theta $
Given that $ \sin \theta + \cos \theta = 1.2 $ find the value of $ \sin \theta \cdot \cos \theta $
Let $f(x) = a\sin(bx + c) + d$. Which of the following statements is true concerning the parameters $a, b, c,$ and $d$?
Let $f(x) = a\sin(bx + c) + d$. Which of the following statements is true concerning the parameters $a, b, c,$ and $d$?
If $ \tan x + \cot x = 5 $, then what is the value of $ \tan^2 x + \cot^2 x $?
If $ \tan x + \cot x = 5 $, then what is the value of $ \tan^2 x + \cot^2 x $?
Flashcards
Quotient Identity
Quotient Identity
Relates tangent to sine and cosine: $ \tan \theta = \frac{\sin \theta}{\cos \theta} $
Pythagorean Identity
Pythagorean Identity
Fundamental trigonometric identity: $ \sin^2 \theta + \cos^2 \theta = 1 $
Reduction Formulas for $ (90^\circ - \theta) $
Reduction Formulas for $ (90^\circ - \theta) $
Expresses trigonometric functions of $ (90^\circ - \theta) $ in terms of $ \theta $: $ \sin(90^\circ - \theta) = \cos \theta $ and $ \cos(90^\circ - \theta) = \sin \theta $
Reduction Formulas for $ (90^\circ + \theta) $
Reduction Formulas for $ (90^\circ + \theta) $
Signup and view all the flashcards
Reduction Formulas for $ (180^\circ - \theta) $
Reduction Formulas for $ (180^\circ - \theta) $
Signup and view all the flashcards
Reduction Formulas for $ (180^\circ + \theta) $
Reduction Formulas for $ (180^\circ + \theta) $
Signup and view all the flashcards
Reduction Formulas for $ (360^\circ - \theta) $
Reduction Formulas for $ (360^\circ - \theta) $
Signup and view all the flashcards
Reduction Formulas for $ -\theta $
Reduction Formulas for $ -\theta $
Signup and view all the flashcards
General Solution for $ \sin \theta = x $
General Solution for $ \sin \theta = x $
Signup and view all the flashcards
General Solution for $ \cos \theta = x $
General Solution for $ \cos \theta = x $
Signup and view all the flashcards
General Solution for $ \tan \theta = x $
General Solution for $ \tan \theta = x $
Signup and view all the flashcards
Area Rule
Area Rule
Signup and view all the flashcards
Sine Rule
Sine Rule
Signup and view all the flashcards
Cosine Rule
Cosine Rule
Signup and view all the flashcards
Trigonometric Identity
Trigonometric Identity
Signup and view all the flashcards
Reduction Formulas
Reduction Formulas
Signup and view all the flashcards
Solving Trigonometric Equations
Solving Trigonometric Equations
Signup and view all the flashcards
Quadrant I
Quadrant I
Signup and view all the flashcards
Quadrant II
Quadrant II
Signup and view all the flashcards
Quadrant III
Quadrant III
Signup and view all the flashcards
Quadrant IV
Quadrant IV
Signup and view all the flashcards
Reduction Formulas for $ (360^
R +
theta) $
Reduction Formulas for $ (360^ R +
theta) $
Signup and view all the flashcards
When to use Cosine Rule
When to use Cosine Rule
Signup and view all the flashcards
When to use Sine Rule
When to use Sine Rule
Signup and view all the flashcards
Square Identity Explained
Square Identity Explained
Signup and view all the flashcards
Undefined Tangent
Undefined Tangent
Signup and view all the flashcards
General Solutions Definition
General Solutions Definition
Signup and view all the flashcards
Steps for Solving Trig Equations
Steps for Solving Trig Equations
Signup and view all the flashcards
Solving Quadratic Equations
Solving Quadratic Equations
Signup and view all the flashcards
Area Rule Use Case
Area Rule Use Case
Signup and view all the flashcards
CAST Diagram
CAST Diagram
Signup and view all the flashcards
Study Notes
- An identity is a mathematical statement equating one quantity to another; trigonometric identities simplify expressions using sine and cosine ratios, facilitating equation-solving and identity-proving.
Quotient Identity
- The quotient identity is expressed as $ \tan \theta = \frac{\sin \theta}{\cos \theta} $.
- This identity is derived from $ \tan \theta = \frac{y}{x} $, where $y$ is the opposite side and $x$ is the adjacent side in a right triangle, by multiplying by $ \frac{r}{r} $ and substituting with $ \sin \theta = \frac{y}{r} $ and $ \cos \theta = \frac{x}{r} $.
- $ \tan \theta $ is undefined when $ \cos \theta = 0 $, which occurs when $ \theta = k \times 90^\circ $ where $k$ is an odd integer.
Square Identity (Pythagorean Identity)
- The square identity is $ \sin^2 \theta + \cos^2 \theta = 1 $.
- The derivation uses the Pythagorean theorem, in a right triangle, $ \sin^2 \theta + \cos^2 \theta = (\frac{y}{r})^2 + (\frac{x}{r})^2 = \frac{y^2 + x^2}{r^2} = \frac{r^2}{r^2} = 1 $.
- Alternate forms of this identity include $ \sin^2 \theta = 1 - \cos^2 \theta $ and $ \cos^2 \theta = 1 - \sin^2 \theta $.
Summary of Fundamental Identities
- $ \tan \theta = \frac{\sin \theta}{\cos \theta} $ where undefined when $ \cos \theta = 0 $.
- $ \sin^2 \theta + \cos^2 \theta = 1 $
Reduction Formulas
- Trigonometric functions with arguments $90^\circ \pm \theta$, $180^\circ \pm \theta$, $360^\circ \pm \theta$, or $ -\theta $ can be expressed in terms of $ \theta $.
Reduction Formulas for $90^\circ \pm \theta$
- $ \sin(90^\circ - \theta) = \cos \theta $ and $ \cos(90^\circ - \theta) = \sin \theta $.
- $ \sin(90^\circ + \theta) = \cos \theta $ and $ \cos(90^\circ + \theta) = -\sin \theta $.
- Derivation example: Reflecting point $ P(\sqrt{3}, 1) $ over $ y = x $ gives $ P'(1, \sqrt{3}) $, demonstrating $ \sin(90^\circ - \theta) = \frac{\sqrt{3}}{2} = \cos 30^\circ = \cos \theta $.
Reduction Formulas for $180^\circ \pm \theta$
- $ \sin(180^\circ - \theta) = \sin \theta $, $ \cos(180^\circ - \theta) = -\cos \theta $, and $ \tan(180^\circ - \theta) = -\tan \theta $.
- $ \sin(180^\circ + \theta) = -\sin \theta $, $ \cos(180^\circ + \theta) = -\cos \theta $, and $ \tan(180^\circ + \theta) = \tan \theta $.
- Derivation example: Reflecting point $ P(\sqrt{3}, 1) $ over the y-axis gives $ P'(-\sqrt{3}, 1) $, demonstrating $ \cos(180^\circ - \theta) = \frac{-\sqrt{3}}{2} = -\cos 30^\circ = -\cos \theta $.
Reduction Formulas for $360^\circ \pm \theta$ and $ -\theta $
- $ \sin(360^\circ - \theta) = -\sin \theta $, $ \cos(360^\circ - \theta) = \cos \theta $, and $ \tan(360^\circ - \theta) = -\tan \theta $.
- $ \sin(-\theta) = -\sin \theta $, $ \cos(-\theta) = \cos \theta $, and $ \tan(-\theta) = -\tan \theta $.
- $ \sin(360^\circ + \theta) = \sin \theta $, $ \cos(360^\circ + \theta) = \cos \theta $, and $ \tan(360^\circ + \theta) = \tan \theta $.
Summary of Reduction Formulas
- $ \sin(90^\circ \pm \theta) = \pm \cos \theta $
- $ \cos(90^\circ \pm \theta) = \mp \sin \theta $
- $ \sin(180^\circ \pm \theta) = \pm \sin \theta $
- $ \cos(180^\circ \pm \theta) = -\cos \theta $
- $ \tan(180^\circ \pm \theta) = \pm \tan \theta $
- $ \sin(360^\circ \pm \theta) = \mp \sin \theta $
- $ \cos(360^\circ \pm \theta) = \pm \cos \theta $
- $ \tan(360^\circ \pm \theta) = \mp \tan \theta $
- $ \sin(-\theta) = -\sin \theta $
- $ \cos(-\theta) = \cos \theta $
- $ \tan(-\theta) = -\tan \theta $
Trigonometric Equations
- General solutions account for periodicity in trigonometric functions.
- If $ \sin \theta = x $, then $ \theta = \sin^{-1} x + k \cdot 360^\circ $ or $ \theta = 180^\circ - \sin^{-1} x + k \cdot 360^\circ $ where $ k \in \mathbb{Z} $.
- If $ \cos \theta = x $, then $ \theta = \cos^{-1} x + k \cdot 360^\circ $ or $ \theta = 360^\circ - \cos^{-1} x + k \cdot 360^\circ $ where $ k \in \mathbb{Z} $.
- If $ \tan \theta = x $, then $ \theta = \tan^{-1} x + k \cdot 180^\circ $ where $ k \in \mathbb{Z} $.
Solving Method
- Simplify the equation using identities.
- Find reference angle using the inverse trigonometric functions.
- Use the CAST diagram to determine quadrants.
- Quadrant I ($0^\circ - 90^\circ $): All positive
- Quadrant II ($90^\circ - 180^\circ $): Sine positive
- Quadrant III ($180^\circ - 270^\circ $): Tangent positive
- Quadrant IV ($270^\circ - 360^\circ $): Cosine positive
- Apply reduction formulas and add multiples of the period.
- Verify with a calculator.
Quadratic Trigonometric Equations
- Simplify the equation and find the reference angle.
- Use the CAST diagram to identify quadrants.
- Substitute values to find solutions.
- Verify solutions.
Area Rule
- The area of a triangle $ \triangle ABC $ can be found using the formulas: $ \text{Area} = \frac{1}{2} bc \sin A = \frac{1}{2} ab \sin C = \frac{1}{2} ac \sin B $.
Sine Rule
- For any triangle $ \triangle ABC $, the sine rule states: $ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} $.
Cosine Rule
- For any triangle $ \triangle ABC $, the cosine rules are:
- $ a^2 = b^2 + c^2 - 2bc \cos A $
- $ b^2 = a^2 + c^2 - 2ac \cos B $
- $ c^2 = a^2 + b^2 - 2ab \cos C $
Summary of Usage
- Area Rule: Use when no height is given.
- Sine Rule: Use when given two angles and one side, or two sides and a non-included angle.
- Cosine Rule: Use when given two sides and the included angle, or three sides.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.