r57fogfuig

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

For what values of $ heta $ is $ an heta $ undefined, according to the given identities?

  • $ heta = k \cdot 90^\circ $, where $ k $ is an odd integer (correct)
  • $ heta = k \cdot 180^\circ $, where $ k $ is any integer
  • $ heta = k \cdot 90^\circ $, where $ k $ is an even integer
  • $ heta = k \cdot 90^\circ $, where $ k $ is any integer

Which of the following equations represents the Pythagorean identity?

  • $ \sin^2 heta - \cos^2 heta = 1 $
  • $ an^2 heta + \cos^2 heta = 1 $
  • $ \sin^2 heta + \cos^2 heta = 1 $ (correct)
  • $ an^2 heta - \sin^2 heta = 1 $

Given $ \cos^2 heta = 0.64 $, find $ \sin^2 heta $.

  • 0.4
  • 0.6
  • 0.36 (correct)
  • 0.8

Simplify the expression: $ \cos(90^\circ + heta) $.

<p>$ -\sin heta $ (A)</p> Signup and view all the answers

Which of the following is equivalent to $ \cos(180^\circ - heta) $?

<p>$ -\cos heta $ (D)</p> Signup and view all the answers

Determine the equivalent expression for $ \sin(180^\circ + heta) $.

<p>$ -\sin heta $ (A)</p> Signup and view all the answers

What is $ an(180^\circ + heta) $ equal to?

<p>$ an heta $ (B)</p> Signup and view all the answers

Simplify: $ \sin(360^\circ - heta) $

<p>$ -\sin heta $ (B)</p> Signup and view all the answers

If $ \sin heta = 0.5 $, what are the general solutions for $ heta $?

<p>$ heta = 30^\circ + k \cdot 360^\circ $ or $ heta = 150^\circ + k \cdot 360^\circ $, where $ k \in \mathbb{Z} $ (D)</p> Signup and view all the answers

Which rule should be used to find the area of a triangle when no height is given?

<p>Area Rule (D)</p> Signup and view all the answers

In triangle $ ABC $, if $ a = 7 $, $ b = 10 $, and $ \angle C = 60^\circ $, which rule would you use to find side $ c $?

<p>Cosine Rule (D)</p> Signup and view all the answers

Given two angles and one side of a triangle, which rule is most suitable for finding another side?

<p>Sine Rule (B)</p> Signup and view all the answers

Determine the value of the expression: $ \sin^2(75^\circ) + \cos^2(75^\circ) $.

<p>1 (C)</p> Signup and view all the answers

Solve for $x$ in the equation: $2\sin^2(x) - 3\sin(x) + 1 = 0$, where $0^\circ \leq x \leq 360^\circ$.

<p>$x = 30^\circ, 90^\circ, 150^\circ$ (A)</p> Signup and view all the answers

Which of the following is equivalent to $ \sin(90^\circ + heta) $?

<p>$ \cos heta $ (D)</p> Signup and view all the answers

What is the simplified form of the expression $ \cos(360^\circ - heta) $?

<p>$ \cos heta $ (C)</p> Signup and view all the answers

If $ an heta = -1 $ and $ 90^\circ < heta < 180^\circ $, what is the value of $ heta $?

<p>$ 135^\circ $ (B)</p> Signup and view all the answers

What is the general solution for $ \sin heta = 1 $?

<p>$ 90^\circ + k \cdot 360^\circ, k \in \mathbb{Z} $ (A)</p> Signup and view all the answers

Solve for $ heta $ in the equation $ 2\cos( heta) - 1 = 0 $, where $ 0^\circ \leq heta \leq 360^\circ $.

<p>$ 60^\circ, 300^\circ $ (C)</p> Signup and view all the answers

If $ \sin( heta) = \cos( heta) $, what is a possible value of $ heta $ in degrees?

<p>$ 45^\circ $ (C)</p> Signup and view all the answers

Which expression is equivalent to $ \cos(180^\circ + heta) $?

<p>$ -\cos heta $ (C)</p> Signup and view all the answers

If the sides of a triangle are $ a = 13 $, $ b = 15 $, and $ c = 14 $, find the area of the triangle.

<p>84 (A)</p> Signup and view all the answers

Given $ \sin x + \cos x = \sqrt{2} $, evaluate $ \sin^3 x + \cos^3 x $.

<p>$ \sqrt{2} $ (A)</p> Signup and view all the answers

In triangle $ ABC $, $ \angle A = 50^\circ $ and $ \angle B = 60^\circ $. If side $ a = 10 $ cm, find the length of side $ b $.

<p>Approximately 11.9 cm (D)</p> Signup and view all the answers

What is the range of the function $ f(x) = 3\sin(2x) $?

<p>[-3, 3] (C)</p> Signup and view all the answers

If $ \sin^2 heta = 0.36 $, what is the value of $ \cos^2 heta $ based on the Pythagorean identity?

<p>$ 0.64 $ (A)</p> Signup and view all the answers

What is the equivalent expression for $ \cos(180^\circ + heta) $?

<p>$ -\cos heta $ (D)</p> Signup and view all the answers

For what condition of $ \cos heta $ is $ an heta $ undefined?

<p>$ \cos heta = 0 $ (C)</p> Signup and view all the answers

Which of the following is a valid alternate form of the Pythagorean identity?

<p>$ \cos^2 heta = 1 - \sin^2 heta $ (A)</p> Signup and view all the answers

Determine the simplified form of $ \sin(360^\circ + heta) $.

<p>$ \sin heta $ (C)</p> Signup and view all the answers

Which reduction formula is used to express trigonometric functions of angles greater than $ 90^\circ $ in terms of acute angles?

<p>Reduction Formulas for $ 90^\circ \pm heta $, $ 180^\circ \pm heta $, etc. (C)</p> Signup and view all the answers

In triangle $ ABC $, if $ \angle A = 30^\circ $, $ b = 8 $, and $ c = 5 $, what is the area of the triangle?

<p>10 (C)</p> Signup and view all the answers

If $ an heta = 1 $ and $ 0^\circ \leq heta \leq 360^\circ $, what are the possible values of $ heta $?

<p>$ 45^\circ, 225^\circ $ (B)</p> Signup and view all the answers

Solve for $ heta $ in the equation $ 2\sin heta + \sqrt{3} = 0 $ for $ 0^\circ \leq heta \leq 360^\circ $.

<p>$ 240^\circ, 300^\circ $ (B)</p> Signup and view all the answers

Which rule would you use to find an unknown angle in a triangle when all three sides are known?

<p>Cosine Rule (A)</p> Signup and view all the answers

Given $ \sin(x) = \cos(2x) $, find the value of $ x $ in the range $ 0^\circ \leq x \leq 90^\circ $.

<p>$ 30^\circ $ (B)</p> Signup and view all the answers

If $ \sin heta + \cos heta = \sqrt{2} $, what is the value of $ an heta $?

<p>1 (C)</p> Signup and view all the answers

According to the quotient identity, what expression is equivalent to $ \tan \theta $?

<p>$ \frac{\sin \theta}{\cos \theta} $ (B)</p> Signup and view all the answers

Which of the following is an equivalent form of the Pythagorean identity $ \sin^2 \theta + \cos^2 \theta = 1 $?

<p>$ \cos^2 \theta = 1 - \sin^2 \theta $ (A)</p> Signup and view all the answers

Using reduction formulas, simplify $ \sin(90^\circ - \theta) $.

<p>$ \cos \theta $ (C)</p> Signup and view all the answers

What is the equivalent expression for $ \cos(180^\circ + \theta) $ using reduction formulas?

<p>$ -\cos \theta $ (A)</p> Signup and view all the answers

What is $ \sin(- \theta) $ equivalent to?

<p>$ -\sin \theta $ (C)</p> Signup and view all the answers

If $ \cos \theta = 0.8 $, what is the value of $ \cos(360^\circ - \theta) $?

<p>$ 0.8 $ (D)</p> Signup and view all the answers

What is the general solution for $ \cos \theta = 0 $?

<p>$ \theta = 90^\circ + k \cdot 180^\circ $ (C)</p> Signup and view all the answers

In which quadrants is $ \sin \theta $ positive?

<p>I and II (D)</p> Signup and view all the answers

Given two sides of a triangle and the included angle, which rule is used to find the third side?

<p>Cosine Rule (A)</p> Signup and view all the answers

If $ \tan(\theta) = -1 $ and $ 270^\circ < \theta < 360^\circ $, find the value of $ \theta $.

<p>$ 315^\circ $ (C)</p> Signup and view all the answers

Solve for $ \theta $ in the equation $ 2\sin(\theta) - 1 = 0 $ for $ 0^\circ \leq \theta \leq 360^\circ $.

<p>$ 30^\circ, 150^\circ $ (D)</p> Signup and view all the answers

Simplify $ \cos(90^\circ + \theta) + \cos(90^\circ - \theta) $.

<p>$ 0 $ (C)</p> Signup and view all the answers

If $ \sin x = \frac{1}{2} $ and $ \cos x = -\frac{\sqrt{3}}{2} $, in which quadrant does angle $ x $ lie?

<p>Quadrant II (C)</p> Signup and view all the answers

Solve for $ x $ if $ \sin(2x) = \cos(x) $ in the interval $ 0^\circ \leq x \leq 90^\circ $.

<p>$ 30^\circ $ (D)</p> Signup and view all the answers

Given $ \sin(x) = 0.6 $ and $ 0^\circ < x < 90^\circ $, find the value of $ \cos(x) $.

<p>$ 0.8 $ (D)</p> Signup and view all the answers

Determine the general solution for $ \tan^2(\theta) = 1 $.

<p>$ \theta = 45^\circ + k \cdot 90^\circ $ (D)</p> Signup and view all the answers

A triangle has sides $ a = 5 $, $ b = 7 $, and $ c = 8 $. Find the cosine of the angle opposite side $ a $ (i.e., $ \cos A $).

<p>$ \frac{11}{14} $ (B)</p> Signup and view all the answers

Find $ \tan(x) $ given that $ \sin(x) + \cos(x) = \frac{7}{5} $ and $ 0 < x < \frac{\pi}{2} $.

<p>$ \frac{3}{4} $ (B)</p> Signup and view all the answers

Given that $ \sin \theta + \cos \theta = 1.2 $ find the value of $ \sin \theta \cdot \cos \theta $

<p>$ 0.22 $ (A)</p> Signup and view all the answers

Let $f(x) = a\sin(bx + c) + d$. Which of the following statements is true concerning the parameters $a, b, c,$ and $d$?

<p>Changing $c$ affects the phase shift of the function. (D)</p> Signup and view all the answers

If $ \tan x + \cot x = 5 $, then what is the value of $ \tan^2 x + \cot^2 x $?

<p>$ 23 $ (D)</p> Signup and view all the answers

Flashcards

Quotient Identity

Relates tangent to sine and cosine: $ \tan \theta = \frac{\sin \theta}{\cos \theta} $

Pythagorean Identity

Fundamental trigonometric identity: $ \sin^2 \theta + \cos^2 \theta = 1 $

Reduction Formulas for $ (90^\circ - \theta) $

Expresses trigonometric functions of $ (90^\circ - \theta) $ in terms of $ \theta $: $ \sin(90^\circ - \theta) = \cos \theta $ and $ \cos(90^\circ - \theta) = \sin \theta $

Reduction Formulas for $ (90^\circ + \theta) $

Expresses trigonometric functions of $ (90^\circ + \theta) $ in terms of $ \theta $: $ \sin(90^\circ + \theta) = \cos \theta $ and $ \cos(90^\circ + \theta) = -\sin \theta $

Signup and view all the flashcards

Reduction Formulas for $ (180^\circ - \theta) $

Expresses trigonometric functions of $ (180^\circ - \theta) $ in terms of $ \theta $: $ \sin(180^\circ - \theta) = \sin \theta $, $ \cos(180^\circ - \theta) = -\cos \theta $, and $ \tan(180^\circ - \theta) = -\tan \theta $

Signup and view all the flashcards

Reduction Formulas for $ (180^\circ + \theta) $

Expresses trigonometric functions of $ (180^\circ + \theta) $ in terms of $ \theta $: $ \sin(180^\circ + \theta) = -\sin \theta $, $ \cos(180^\circ + \theta) = -\cos \theta $, and $ \tan(180^\circ + \theta) = \tan \theta $

Signup and view all the flashcards

Reduction Formulas for $ (360^\circ - \theta) $

Expresses trigonometric functions of $ (360^\circ - \theta) $ in terms of $ \theta $: $ \sin(360^\circ - \theta) = -\sin \theta $, $ \cos(360^\circ - \theta) = \cos \theta $, and $ \tan(360^\circ - \theta) = -\tan \theta $

Signup and view all the flashcards

Reduction Formulas for $ -\theta $

Expresses trigonometric functions of $ -\theta $ in terms of $ \theta $: $ \sin(-\theta) = -\sin \theta $, $ \cos(-\theta) = \cos \theta $, and $ \tan(-\theta) = -\tan \theta $

Signup and view all the flashcards

General Solution for $ \sin \theta = x $

If $ \sin \theta = x $, then $ \theta = \sin^{-1} x + k \cdot 360^\circ $ or $ \theta = 180^\circ - \sin^{-1} x + k \cdot 360^\circ $, where $ k \in \mathbb{Z} $

Signup and view all the flashcards

General Solution for $ \cos \theta = x $

If $ \cos \theta = x $, then $ \theta = \cos^{-1} x + k \cdot 360^\circ $ or $ \theta = 360^\circ - \cos^{-1} x + k \cdot 360^\circ $, where $ k \in \mathbb{Z} $

Signup and view all the flashcards

General Solution for $ \tan \theta = x $

If $ \tan \theta = x $, then $ \theta = \tan^{-1} x + k \cdot 180^\circ $, where $ k \in \mathbb{Z} $

Signup and view all the flashcards

Area Rule

Area of a triangle $ \triangle ABC $ is $ \frac{1}{2} bc \sin A = \frac{1}{2} ab \sin C = \frac{1}{2} ac \sin B $

Signup and view all the flashcards

Sine Rule

For any triangle $ \triangle ABC $, $ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} $

Signup and view all the flashcards

Cosine Rule

For any triangle $ \triangle ABC $, $ a^2 = b^2 + c^2 - 2bc \cos A $, $ b^2 = a^2 + c^2 - 2ac \cos B $, $ c^2 = a^2 + b^2 - 2ab \cos C $

Signup and view all the flashcards

Trigonometric Identity

A mathematical statement that equates one quantity with another. They help simplify expressions and solve equations.

Signup and view all the flashcards

Reduction Formulas

Any trigonometric function with arguments $90^\circ \pm \theta$, $180^\circ \pm \theta$, $360^\circ \pm \theta$, or $-\theta$ can be expressed in terms of $ \theta $.

Signup and view all the flashcards

Solving Trigonometric Equations

To simplify trigonometric equations and find solutions, use trigonometric identities.

Signup and view all the flashcards

Quadrant I

The quadrant where all trigonometric functions (sine, cosine, and tangent) are positive.

Signup and view all the flashcards

Quadrant II

The quadrant where sine is positive; cosine and tangent are negative.

Signup and view all the flashcards

Quadrant III

The quadrant where tangent is positive; sine and cosine are negative.

Signup and view all the flashcards

Quadrant IV

The quadrant where cosine is positive; sine and tangent are negative.

Signup and view all the flashcards

Reduction Formulas for $ (360^ R +

theta) $

Expresses trigonometric functions of $ (360^ R +

theta) $ in terms of $

theta $: $ sin(360^ R +

theta) = sin

theta $, $ cos(360^ R +

theta) = cos

theta $, and $ tan(360^ R +

theta) = tan

theta $

Signup and view all the flashcards

When to use Cosine Rule

Use when two sides and the included angle are known or when all three sides of a triangle are known.

Signup and view all the flashcards

When to use Sine Rule

Use when dealing with two angles and one side, or two sides and a non-included angle.

Signup and view all the flashcards

Square Identity Explained

The square of the sine of an angle plus the square of the cosine of the same angle always equals 1: $ \sin^2 \theta + \cos^2 \theta = 1 $

Signup and view all the flashcards

Undefined Tangent

When $ \cos \theta = 0 $, the value of $ \tan \theta $ is undefined.

Signup and view all the flashcards

General Solutions Definition

A method to find all angles satisfying a trig equation, accounting for periodicity, using $ k \in \mathbb{Z} $.

Signup and view all the flashcards

Steps for Solving Trig Equations

To solve trigonometric equations, simplify using standard trig identities, find the reference angle, determine quadrants using CAST, and check solutions.

Signup and view all the flashcards

Solving Quadratic Equations

Simplify the given equations, find necessary reference angles and solutions within the specified domain.

Signup and view all the flashcards

Area Rule Use Case

Used when no height is given to find the area of a triangle. Area is half the product of two sides and the sine of their included angle.

Signup and view all the flashcards

CAST Diagram

The mnemonic to remember which trigonometric functions are positive in each quadrant: All, Sine, Tangent, Cosine.

Signup and view all the flashcards

Study Notes

  • An identity is a mathematical statement equating one quantity to another; trigonometric identities simplify expressions using sine and cosine ratios, facilitating equation-solving and identity-proving.

Quotient Identity

  • The quotient identity is expressed as $ \tan \theta = \frac{\sin \theta}{\cos \theta} $.
  • This identity is derived from $ \tan \theta = \frac{y}{x} $, where $y$ is the opposite side and $x$ is the adjacent side in a right triangle, by multiplying by $ \frac{r}{r} $ and substituting with $ \sin \theta = \frac{y}{r} $ and $ \cos \theta = \frac{x}{r} $.
  • $ \tan \theta $ is undefined when $ \cos \theta = 0 $, which occurs when $ \theta = k \times 90^\circ $ where $k$ is an odd integer.

Square Identity (Pythagorean Identity)

  • The square identity is $ \sin^2 \theta + \cos^2 \theta = 1 $.
  • The derivation uses the Pythagorean theorem, in a right triangle, $ \sin^2 \theta + \cos^2 \theta = (\frac{y}{r})^2 + (\frac{x}{r})^2 = \frac{y^2 + x^2}{r^2} = \frac{r^2}{r^2} = 1 $.
  • Alternate forms of this identity include $ \sin^2 \theta = 1 - \cos^2 \theta $ and $ \cos^2 \theta = 1 - \sin^2 \theta $.

Summary of Fundamental Identities

  • $ \tan \theta = \frac{\sin \theta}{\cos \theta} $ where undefined when $ \cos \theta = 0 $.
  • $ \sin^2 \theta + \cos^2 \theta = 1 $

Reduction Formulas

  • Trigonometric functions with arguments $90^\circ \pm \theta$, $180^\circ \pm \theta$, $360^\circ \pm \theta$, or $ -\theta $ can be expressed in terms of $ \theta $.

Reduction Formulas for $90^\circ \pm \theta$

  • $ \sin(90^\circ - \theta) = \cos \theta $ and $ \cos(90^\circ - \theta) = \sin \theta $.
  • $ \sin(90^\circ + \theta) = \cos \theta $ and $ \cos(90^\circ + \theta) = -\sin \theta $.
  • Derivation example: Reflecting point $ P(\sqrt{3}, 1) $ over $ y = x $ gives $ P'(1, \sqrt{3}) $, demonstrating $ \sin(90^\circ - \theta) = \frac{\sqrt{3}}{2} = \cos 30^\circ = \cos \theta $.

Reduction Formulas for $180^\circ \pm \theta$

  • $ \sin(180^\circ - \theta) = \sin \theta $, $ \cos(180^\circ - \theta) = -\cos \theta $, and $ \tan(180^\circ - \theta) = -\tan \theta $.
  • $ \sin(180^\circ + \theta) = -\sin \theta $, $ \cos(180^\circ + \theta) = -\cos \theta $, and $ \tan(180^\circ + \theta) = \tan \theta $.
  • Derivation example: Reflecting point $ P(\sqrt{3}, 1) $ over the y-axis gives $ P'(-\sqrt{3}, 1) $, demonstrating $ \cos(180^\circ - \theta) = \frac{-\sqrt{3}}{2} = -\cos 30^\circ = -\cos \theta $.

Reduction Formulas for $360^\circ \pm \theta$ and $ -\theta $

  • $ \sin(360^\circ - \theta) = -\sin \theta $, $ \cos(360^\circ - \theta) = \cos \theta $, and $ \tan(360^\circ - \theta) = -\tan \theta $.
  • $ \sin(-\theta) = -\sin \theta $, $ \cos(-\theta) = \cos \theta $, and $ \tan(-\theta) = -\tan \theta $.
  • $ \sin(360^\circ + \theta) = \sin \theta $, $ \cos(360^\circ + \theta) = \cos \theta $, and $ \tan(360^\circ + \theta) = \tan \theta $.

Summary of Reduction Formulas

  • $ \sin(90^\circ \pm \theta) = \pm \cos \theta $
  • $ \cos(90^\circ \pm \theta) = \mp \sin \theta $
  • $ \sin(180^\circ \pm \theta) = \pm \sin \theta $
  • $ \cos(180^\circ \pm \theta) = -\cos \theta $
  • $ \tan(180^\circ \pm \theta) = \pm \tan \theta $
  • $ \sin(360^\circ \pm \theta) = \mp \sin \theta $
  • $ \cos(360^\circ \pm \theta) = \pm \cos \theta $
  • $ \tan(360^\circ \pm \theta) = \mp \tan \theta $
  • $ \sin(-\theta) = -\sin \theta $
  • $ \cos(-\theta) = \cos \theta $
  • $ \tan(-\theta) = -\tan \theta $

Trigonometric Equations

  • General solutions account for periodicity in trigonometric functions.
  • If $ \sin \theta = x $, then $ \theta = \sin^{-1} x + k \cdot 360^\circ $ or $ \theta = 180^\circ - \sin^{-1} x + k \cdot 360^\circ $ where $ k \in \mathbb{Z} $.
  • If $ \cos \theta = x $, then $ \theta = \cos^{-1} x + k \cdot 360^\circ $ or $ \theta = 360^\circ - \cos^{-1} x + k \cdot 360^\circ $ where $ k \in \mathbb{Z} $.
  • If $ \tan \theta = x $, then $ \theta = \tan^{-1} x + k \cdot 180^\circ $ where $ k \in \mathbb{Z} $.

Solving Method

  • Simplify the equation using identities.
  • Find reference angle using the inverse trigonometric functions.
  • Use the CAST diagram to determine quadrants.
    • Quadrant I ($0^\circ - 90^\circ $): All positive
    • Quadrant II ($90^\circ - 180^\circ $): Sine positive
    • Quadrant III ($180^\circ - 270^\circ $): Tangent positive
    • Quadrant IV ($270^\circ - 360^\circ $): Cosine positive
  • Apply reduction formulas and add multiples of the period.
  • Verify with a calculator.

Quadratic Trigonometric Equations

  • Simplify the equation and find the reference angle.
  • Use the CAST diagram to identify quadrants.
  • Substitute values to find solutions.
  • Verify solutions.

Area Rule

  • The area of a triangle $ \triangle ABC $ can be found using the formulas: $ \text{Area} = \frac{1}{2} bc \sin A = \frac{1}{2} ab \sin C = \frac{1}{2} ac \sin B $.

Sine Rule

  • For any triangle $ \triangle ABC $, the sine rule states: $ \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} $.

Cosine Rule

  • For any triangle $ \triangle ABC $, the cosine rules are:
    • $ a^2 = b^2 + c^2 - 2bc \cos A $
    • $ b^2 = a^2 + c^2 - 2ac \cos B $
    • $ c^2 = a^2 + b^2 - 2ab \cos C $

Summary of Usage

  • Area Rule: Use when no height is given.
  • Sine Rule: Use when given two angles and one side, or two sides and a non-included angle.
  • Cosine Rule: Use when given two sides and the included angle, or three sides.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team
Use Quizgecko on...
Browser
Browser