Podcast
Questions and Answers
Which of the following factors contributes to an increased stroke volume in a trained athlete's heart?
Which of the following factors contributes to an increased stroke volume in a trained athlete's heart?
Which of the following hormones can increase the contractility of cardiac cells?
Which of the following hormones can increase the contractility of cardiac cells?
Which division of the autonomic nervous system is responsible for decreasing heart rate?
Which division of the autonomic nervous system is responsible for decreasing heart rate?
Which chamber of the heart receives blood from the superior and inferior vena cava?
Which chamber of the heart receives blood from the superior and inferior vena cava?
Signup and view all the answers
What is the purpose of the longer action potential in cardiac contractile fibers?
What is the purpose of the longer action potential in cardiac contractile fibers?
Signup and view all the answers
What is the function of the electrocardiogram (ECG)?
What is the function of the electrocardiogram (ECG)?
Signup and view all the answers
What is the role of the medulla oblongata in autonomic innervation of the heart?
What is the role of the medulla oblongata in autonomic innervation of the heart?
Signup and view all the answers
Which layer of the heart is responsible for pumping blood through the heart?
Which layer of the heart is responsible for pumping blood through the heart?
Signup and view all the answers
Which valves separate the chambers of the heart?
Which valves separate the chambers of the heart?
Signup and view all the answers
Where does the heart receive oxygen-poor blood from?
Where does the heart receive oxygen-poor blood from?
Signup and view all the answers
Which phase of ventricular systole includes isovolumic contraction and ventricular ejection?
Which phase of ventricular systole includes isovolumic contraction and ventricular ejection?
Signup and view all the answers
Which of the following is responsible for generating its own rhythm in the heart?
Which of the following is responsible for generating its own rhythm in the heart?
Signup and view all the answers
What is the purpose of the interventricular septum in the heart?
What is the purpose of the interventricular septum in the heart?
Signup and view all the answers
Which of the following is responsible for routing blood in the heart?
Which of the following is responsible for routing blood in the heart?
Signup and view all the answers
What is the function of the atria in the heart?
What is the function of the atria in the heart?
Signup and view all the answers
What is the function of the ventricles in the heart?
What is the function of the ventricles in the heart?
Signup and view all the answers
What is the purpose of the large number of mitochondria in cardiac cells?
What is the purpose of the large number of mitochondria in cardiac cells?
Signup and view all the answers
What is the purpose of the plateau phase in the action potential of cardiac contractile fibers?
What is the purpose of the plateau phase in the action potential of cardiac contractile fibers?
Signup and view all the answers
What is the purpose of the T-tubules in cardiac cells?
What is the purpose of the T-tubules in cardiac cells?
Signup and view all the answers
What is the purpose of the electrocardiogram (ECG)?
What is the purpose of the electrocardiogram (ECG)?
Signup and view all the answers
Which part of the brain is responsible for controlling the autonomic innervation of the heart?
Which part of the brain is responsible for controlling the autonomic innervation of the heart?
Signup and view all the answers
Which of the following factors does NOT contribute to an increased stroke volume in a trained athlete's heart?
Which of the following factors does NOT contribute to an increased stroke volume in a trained athlete's heart?
Signup and view all the answers
Which of the following is responsible for maintaining normal heart function by regulating intra- and extracellular ion concentrations?
Which of the following is responsible for maintaining normal heart function by regulating intra- and extracellular ion concentrations?
Signup and view all the answers
Which of the following hormones is released by sympathetic stimulation and increases heart rate and force of contraction?
Which of the following hormones is released by sympathetic stimulation and increases heart rate and force of contraction?
Signup and view all the answers
Which division of the autonomic nervous system is responsible for decreasing heart rate?
Which division of the autonomic nervous system is responsible for decreasing heart rate?
Signup and view all the answers
Which of the following is responsible for stretching the ventricles by contained blood?
Which of the following is responsible for stretching the ventricles by contained blood?
Signup and view all the answers
Which phase of ventricular systole includes isovolumic contraction and ventricular ejection?
Which phase of ventricular systole includes isovolumic contraction and ventricular ejection?
Signup and view all the answers
Which of the following is NOT a function of the electrocardiogram (ECG)?
Which of the following is NOT a function of the electrocardiogram (ECG)?
Signup and view all the answers
Which chamber of the heart receives blood from the superior and inferior vena cava?
Which chamber of the heart receives blood from the superior and inferior vena cava?
Signup and view all the answers
Which layer of the heart is responsible for pumping blood through the heart?
Which layer of the heart is responsible for pumping blood through the heart?
Signup and view all the answers
Which of the following hormones can increase the contractility of cardiac cells?
Which of the following hormones can increase the contractility of cardiac cells?
Signup and view all the answers
Which layer of the heart is responsible for pumping blood through the heart?
Which layer of the heart is responsible for pumping blood through the heart?
Signup and view all the answers
Which valves separate the chambers of the heart?
Which valves separate the chambers of the heart?
Signup and view all the answers
Which chamber of the heart receives blood from the superior and inferior vena cava?
Which chamber of the heart receives blood from the superior and inferior vena cava?
Signup and view all the answers
Which of the following is responsible for regulating the heartbeat?
Which of the following is responsible for regulating the heartbeat?
Signup and view all the answers
Which phase of ventricular systole includes isovolumic contraction and ventricular ejection?
Which phase of ventricular systole includes isovolumic contraction and ventricular ejection?
Signup and view all the answers
Which of the following is a factor affecting cardiac output?
Which of the following is a factor affecting cardiac output?
Signup and view all the answers
Which of the following is NOT an abnormality of the heart mentioned in the text?
Which of the following is NOT an abnormality of the heart mentioned in the text?
Signup and view all the answers
What is the difference between cardiac output and cardiac reserve?
What is the difference between cardiac output and cardiac reserve?
Signup and view all the answers
Which of the following is responsible for pumping oxygen-rich blood to the systemic circuit?
Which of the following is responsible for pumping oxygen-rich blood to the systemic circuit?
Signup and view all the answers
What is the purpose of the endocardium?
What is the purpose of the endocardium?
Signup and view all the answers
ECG MATCH UP appropriate parts
ECG MATCH UP appropriate parts
Signup and view all the answers
what does the T wave represent in a ECG?
what does the T wave represent in a ECG?
Signup and view all the answers
What is the TP interval?
What is the TP interval?
Signup and view all the answers
First heart sound or “lubb”
First heart sound or “lubb”
Signup and view all the answers
MATCHY MATCHY
MATCHY MATCHY
Signup and view all the answers
your patients HR is 60bpm, his SV is 100ml, what is their Cardiac output?
your patients HR is 60bpm, his SV is 100ml, what is their Cardiac output?
Signup and view all the answers
so your patient has End diastolic volume (EDV) of 145 & an end systolic volume (ESV) of 70. what is the Stroke volume?
so your patient has End diastolic volume (EDV) of 145 & an end systolic volume (ESV) of 70. what is the Stroke volume?
Signup and view all the answers
Homeostasis is the maintenance of a relatively stable ______ environment.
Homeostasis is the maintenance of a relatively stable ______ environment.
Signup and view all the answers
Most cells are not in direct contact with the ______ environment.
Most cells are not in direct contact with the ______ environment.
Signup and view all the answers
The fluid environment in which the cells live is called ______ fluid.
The fluid environment in which the cells live is called ______ fluid.
Signup and view all the answers
The fluid contained within all body cells is called ______ fluid.
The fluid contained within all body cells is called ______ fluid.
Signup and view all the answers
Na+ binding stimulates ______ by ATP.
Na+ binding stimulates ______ by ATP.
Signup and view all the answers
Extracellular K+ binds to the ______, triggering release of the Phosphate group.
Extracellular K+ binds to the ______, triggering release of the Phosphate group.
Signup and view all the answers
The initial carrier protein uses ATP to move substance 1 across the membrane against its concentration gradient, storing ______ energy.
The initial carrier protein uses ATP to move substance 1 across the membrane against its concentration gradient, storing ______ energy.
Signup and view all the answers
Lipophilic ligands – can diffuse through the phospholipid bilayer of the cell membrane and bind to cytosolic or nuclear ______ to generate a response within the cell.
Lipophilic ligands – can diffuse through the phospholipid bilayer of the cell membrane and bind to cytosolic or nuclear ______ to generate a response within the cell.
Signup and view all the answers
____ functions as a second messenger in other pathways.
____ functions as a second messenger in other pathways.
Signup and view all the answers
Signal molecule (first messenger) ______ activates a G protein.
Signal molecule (first messenger) ______ activates a G protein.
Signup and view all the answers
G protein activates the membrane-bound enzyme, ______.
G protein activates the membrane-bound enzyme, ______.
Signup and view all the answers
Phospholipase C catalyzes synthesis of inositol triphosphate (IP3), which stimulates release of ______ from ER.
Phospholipase C catalyzes synthesis of inositol triphosphate (IP3), which stimulates release of ______ from ER.
Signup and view all the answers
Released Ca2+ initiates cellular ______.
Released Ca2+ initiates cellular ______.
Signup and view all the answers
IP3 quickly diffuses through the cytosol and binds to an IP3– gated ______ channel in the ER membrane, causing it to open.
IP3 quickly diffuses through the cytosol and binds to an IP3– gated ______ channel in the ER membrane, causing it to open.
Signup and view all the answers
Homeostasis is continually being disrupted by: External stimuli Heat, cold, lack of oxygen, pathogens, toxins Internal stimuli Body temperature Blood pressure Concentration of water, glucose, salts, oxygen, etc. Physical and psychological ______
Homeostasis is continually being disrupted by: External stimuli Heat, cold, lack of oxygen, pathogens, toxins Internal stimuli Body temperature Blood pressure Concentration of water, glucose, salts, oxygen, etc. Physical and psychological ______
Signup and view all the answers
Control systems are grouped into two classes: Intrinsic controls Local controls that are inherent within an organ Involves detecting deviations and making corrections within the organ, often called ______
Control systems are grouped into two classes: Intrinsic controls Local controls that are inherent within an organ Involves detecting deviations and making corrections within the organ, often called ______
Signup and view all the answers
Extrinsic controls Regulatory mechanisms initiated outside an organ Accomplished by nervous and endocrine systems Responses of an organ that are triggered by factors external to the organ or ______
Extrinsic controls Regulatory mechanisms initiated outside an organ Accomplished by nervous and endocrine systems Responses of an organ that are triggered by factors external to the organ or ______
Signup and view all the answers
In order to maintain homeostasis, control system must be able to: Detect deviations from normal in the internal environment that need to be held within narrow limits Integrate this information with other relevant information Make appropriate adjustments in order to restore factor to its desired ______
In order to maintain homeostasis, control system must be able to: Detect deviations from normal in the internal environment that need to be held within narrow limits Integrate this information with other relevant information Make appropriate adjustments in order to restore factor to its desired ______
Signup and view all the answers
Enzyme-linked receptors are embedded in the plasma membrane, with their catalytic site exposed ______ the cell
Enzyme-linked receptors are embedded in the plasma membrane, with their catalytic site exposed ______ the cell
Signup and view all the answers
The most common enzyme-linked receptor is the receptor tyrosine ______
The most common enzyme-linked receptor is the receptor tyrosine ______
Signup and view all the answers
Phosphorylation is the process of activating a protein by the addition of a ______ (PO43) group
Phosphorylation is the process of activating a protein by the addition of a ______ (PO43) group
Signup and view all the answers
Three stages of Signal Transduction: 1) Reception – an extracellular ligand binds to and activates a ______ receptor
Three stages of Signal Transduction: 1) Reception – an extracellular ligand binds to and activates a ______ receptor
Signup and view all the answers
______ uses membrane proteins to transport large, polar molecules that are not usually permeable to the phospholipid bilayer. Two types of transport proteins: 1) Channel proteins – provide a narrow channel for the substance to pass through. Mostly for water and ions 2) Carrier proteins – physically bind to the substance on one side of the membrane, and change conformation in order to release it on the other. Ideal for small organic molecules, such as glucose and amino acids, that are too large to pass through channels.
______ uses membrane proteins to transport large, polar molecules that are not usually permeable to the phospholipid bilayer. Two types of transport proteins: 1) Channel proteins – provide a narrow channel for the substance to pass through. Mostly for water and ions 2) Carrier proteins – physically bind to the substance on one side of the membrane, and change conformation in order to release it on the other. Ideal for small organic molecules, such as glucose and amino acids, that are too large to pass through channels.
Signup and view all the answers
______ uses energy from ATP to move a substance against its concentration gradient. Requires the use of carrier proteins, not channel proteins. 2 types of Active Transport: Membrane pump (protein-mediated active transport) Coupled transport (co-transport)
______ uses energy from ATP to move a substance against its concentration gradient. Requires the use of carrier proteins, not channel proteins. 2 types of Active Transport: Membrane pump (protein-mediated active transport) Coupled transport (co-transport)
Signup and view all the answers
______ is the most important membrane pump in all animal cells. It transports 3 Na+ out of the cell and 2 K+ into the cell for each ATP consumed. Properly called “Na+/K+ ATPase”.
______ is the most important membrane pump in all animal cells. It transports 3 Na+ out of the cell and 2 K+ into the cell for each ATP consumed. Properly called “Na+/K+ ATPase”.
Signup and view all the answers
______ – the diffusion of water across a semipermeable membrane from an area of low solute concentration to an area of high solute concentration. In some circumstances, the solvent may be something other than water. However, in living systems, the solvent is always water, so biologists generally define osmosis as the diffusion of water across a semipermeable membrane.
______ – the diffusion of water across a semipermeable membrane from an area of low solute concentration to an area of high solute concentration. In some circumstances, the solvent may be something other than water. However, in living systems, the solvent is always water, so biologists generally define osmosis as the diffusion of water across a semipermeable membrane.
Signup and view all the answers
Negative feedback loops consist of: Stimulus – a change Receptor Receptor – structures that monitor a controlled condition and detect the change Control Center (Integration Center) – determines next action Efferent Pathway – the means to send a signal from the integration center to the effector organ Effector – the organ or tissue that receives directions from the control center and produces ______
Negative feedback loops consist of: Stimulus – a change Receptor Receptor – structures that monitor a controlled condition and detect the change Control Center (Integration Center) – determines next action Efferent Pathway – the means to send a signal from the integration center to the effector organ Effector – the organ or tissue that receives directions from the control center and produces ______
Signup and view all the answers
Positive feedback loops consist of: Stimulus – a change Receptor Receptor – structures that monitor a controlled condition and detect the change Control Center (Integration Center) - determines next action Efferent Pathway – the means to send a signal from the integration center to the effector organ Effector – the organ or tissue that receives directions from the control center and produces ______
Positive feedback loops consist of: Stimulus – a change Receptor Receptor – structures that monitor a controlled condition and detect the change Control Center (Integration Center) - determines next action Efferent Pathway – the means to send a signal from the integration center to the effector organ Effector – the organ or tissue that receives directions from the control center and produces ______
Signup and view all the answers
NFbL Stimulus: Low serum T3, T4 Receptors: T3, T4 binding sites on Hypothalamus Neural Integrating Center: Hypothalamus releases TRH ______ Efferent Pathway: Hypothalamic-Pituitary Portal Veins Endocrine Integrating Center: Anterior Pituitary releases TSH Efferent Pathway: Bloodstream Endocrine Integrating Center: Thyroid Gland (releasing T3, T4) Efferent Pathway: Bloodstream Effector: Various body tissues Response: Increased serum sT3, T4, relieves original stimulus
NFbL Stimulus: Low serum T3, T4 Receptors: T3, T4 binding sites on Hypothalamus Neural Integrating Center: Hypothalamus releases TRH ______ Efferent Pathway: Hypothalamic-Pituitary Portal Veins Endocrine Integrating Center: Anterior Pituitary releases TSH Efferent Pathway: Bloodstream Endocrine Integrating Center: Thyroid Gland (releasing T3, T4) Efferent Pathway: Bloodstream Effector: Various body tissues Response: Increased serum sT3, T4, relieves original stimulus
Signup and view all the answers
Stimulus: Amniotic sac breaks, fetus drops lower in uterus Receptors: Stretch receptors in walls of uterus Afferent Pathway: Vagus nerve (sensory) to Hypothalamus Efferent Pathway: Hypothalamo-neurohypophyseal nerve tract Integrating Center: Neurohypophysis releases oxytocin Efferent Pathway: Bloodstream to uterine smooth muscle Effector: Uterine contractions cause cervix to dilate & fetus to descend in birth canal Response: More stretch… more oxytocin release… more contractions…. repeat PFbL ends with birth of the baby & ↓ uterine stretch
Stimulus: Amniotic sac breaks, fetus drops lower in uterus Receptors: Stretch receptors in walls of uterus Afferent Pathway: Vagus nerve (sensory) to Hypothalamus Efferent Pathway: Hypothalamo-neurohypophyseal nerve tract Integrating Center: Neurohypophysis releases oxytocin Efferent Pathway: Bloodstream to uterine smooth muscle Effector: Uterine contractions cause cervix to dilate & fetus to descend in birth canal Response: More stretch… more oxytocin release… more contractions…. repeat PFbL ends with birth of the baby & ↓ uterine stretch
Signup and view all the answers
Parathyroid hormones are regulators of ______ levels in healthy adults
Parathyroid hormones are regulators of ______ levels in healthy adults
Signup and view all the answers
Adrenal medulla – Nervous tissue that functions as part of the Sympathetic Nervous System Secretes ______
Adrenal medulla – Nervous tissue that functions as part of the Sympathetic Nervous System Secretes ______
Signup and view all the answers
Adrenal cortex – Glandular tissue Secretes ______
Adrenal cortex – Glandular tissue Secretes ______
Signup and view all the answers
The most important mineralocorticoid is ______
The most important mineralocorticoid is ______
Signup and view all the answers
The most important glucocorticoid is ______
The most important glucocorticoid is ______
Signup and view all the answers
Most gonadocorticoids secreted are ______
Most gonadocorticoids secreted are ______
Signup and view all the answers
Blood contains low concentration of Ca2+, which stimulates…
Blood contains low concentration of Ca2+, which stimulates…
Signup and view all the answers
PTH causes [Ca2+] in blood to rise (Ca2+ is reabsorbed in kidneys and leached from bones) and the stimulus is removed
PTH causes [Ca2+] in blood to rise (Ca2+ is reabsorbed in kidneys and leached from bones) and the stimulus is removed
Signup and view all the answers
Neural Stimuli: Neural Stimulus Hormones are released in response to neural stimulation originating from the
Neural Stimuli: Neural Stimulus Hormones are released in response to neural stimulation originating from the
Signup and view all the answers
Preganglionic sympathetic fibers stimulate
Preganglionic sympathetic fibers stimulate
Signup and view all the answers
Hormonal Stimuli: Hormonal Stimulus Hormones are released in response to hormones produced by other
Hormonal Stimuli: Hormonal Stimulus Hormones are released in response to hormones produced by other
Signup and view all the answers
The hypothalamus secrets hormones that stimulate the
The hypothalamus secrets hormones that stimulate the
Signup and view all the answers
ADH and oxytocin are made and packaged in ______
ADH and oxytocin are made and packaged in ______
Signup and view all the answers
Hormones are released into the blood when stimulated by ______ from the hypothalamus
Hormones are released into the blood when stimulated by ______ from the hypothalamus
Signup and view all the answers
The ______ is structurally part of the brain and contains axons of hypothalamic nerves where hormones are manufactured
The ______ is structurally part of the brain and contains axons of hypothalamic nerves where hormones are manufactured
Signup and view all the answers
Oxytocin is a strong stimulant of ______
Oxytocin is a strong stimulant of ______
Signup and view all the answers
Antidiuretic Hormone (ADH) reduces urine formation in order to avoid ______
Antidiuretic Hormone (ADH) reduces urine formation in order to avoid ______
Signup and view all the answers
The thyroid gland produces hormones such as thyroxine (T4) and triiodothyronine (T3) that regulate ______
The thyroid gland produces hormones such as thyroxine (T4) and triiodothyronine (T3) that regulate ______
Signup and view all the answers
Endocrine system includes all cells and endocrine tissues that produce hormones or ______ factors.
Endocrine system includes all cells and endocrine tissues that produce hormones or ______ factors.
Signup and view all the answers
Endocrine system regulates long-term ongoing metabolic activity management, while the nervous system performs short-term ______ management.
Endocrine system regulates long-term ongoing metabolic activity management, while the nervous system performs short-term ______ management.
Signup and view all the answers
Endocrine system functions include maintaining an optimal biochemical environment within the body, influencing metabolic activities, and controlling growth, development, and ______ reproduction.
Endocrine system functions include maintaining an optimal biochemical environment within the body, influencing metabolic activities, and controlling growth, development, and ______ reproduction.
Signup and view all the answers
Endocrine system consists of various glands, including the hypothalamus, pituitary, pineal, thyroid, parathyroid, thymus, adrenal, pancreas, and ______.
Endocrine system consists of various glands, including the hypothalamus, pituitary, pineal, thyroid, parathyroid, thymus, adrenal, pancreas, and ______.
Signup and view all the answers
Hormones are chemicals secreted by cells into the bloodstream for transport to distant target tissues, where they bind to specific receptors and induce ______ changes.
Hormones are chemicals secreted by cells into the bloodstream for transport to distant target tissues, where they bind to specific receptors and induce ______ changes.
Signup and view all the answers
Hormones can have different cellular responses, such as altering plasma membrane permeability, stimulating gene activation and protein synthesis, activating or deactivating enzyme systems, inducing secretory activity, and stimulating ______ and cytokinesis.
Hormones can have different cellular responses, such as altering plasma membrane permeability, stimulating gene activation and protein synthesis, activating or deactivating enzyme systems, inducing secretory activity, and stimulating ______ and cytokinesis.
Signup and view all the answers
The hypothalamus controls the release of hormones from the pituitary gland by sending ______ stimuli.
The hypothalamus controls the release of hormones from the pituitary gland by sending ______ stimuli.
Signup and view all the answers
The anterior pituitary synthesizes and releases six hormones: TSH, PRL, GH, ACTH, FSH, and ______.
The anterior pituitary synthesizes and releases six hormones: TSH, PRL, GH, ACTH, FSH, and ______.
Signup and view all the answers
The posterior pituitary stores and releases two hormones: ______ and vasopressin (ADH).
The posterior pituitary stores and releases two hormones: ______ and vasopressin (ADH).
Signup and view all the answers
The hypothalamus releases hormones that stimulate the synthesis and release of hormones from the ______ pituitary.
The hypothalamus releases hormones that stimulate the synthesis and release of hormones from the ______ pituitary.
Signup and view all the answers
Hypothalamic hormones include TRH, CRH, GnRH, GHRH, and ______, which regulate the release of TSH, ACTH, FSH, LH, and PRL, respectively.
Hypothalamic hormones include TRH, CRH, GnRH, GHRH, and ______, which regulate the release of TSH, ACTH, FSH, LH, and PRL, respectively.
Signup and view all the answers
The pituitary gland is attached to the hypothalamus by the ______.
The pituitary gland is attached to the hypothalamus by the ______.
Signup and view all the answers
Up-regulation of ______ receptors occurs after four weeks of exercise
Up-regulation of ______ receptors occurs after four weeks of exercise
Signup and view all the answers
When low plasma glucose levels occur, the ______ are released to accelerate lypolysis
When low plasma glucose levels occur, the ______ are released to accelerate lypolysis
Signup and view all the answers
Triglycerides are reduced to free fatty acids (lipolysis) by ______ which is activated by:
Triglycerides are reduced to free fatty acids (lipolysis) by ______ which is activated by:
Signup and view all the answers
Osmoreceptors in hypothalamus sense dehydration, Antidiuretic Hormone (ADH) is released from the posterior pituitary, and ______ is then reabsorbed by the kidneys.
Osmoreceptors in hypothalamus sense dehydration, Antidiuretic Hormone (ADH) is released from the posterior pituitary, and ______ is then reabsorbed by the kidneys.
Signup and view all the answers
Three Phases of ______ (General Adaptation Syndrome): Alarm Phase Resistance Phase Exhaustion
Three Phases of ______ (General Adaptation Syndrome): Alarm Phase Resistance Phase Exhaustion
Signup and view all the answers
______ Phase: immediate, fight or flight, directed by the sympathetic nervous system, dominated by glucocorticoids
______ Phase: immediate, fight or flight, directed by the sympathetic nervous system, dominated by glucocorticoids
Signup and view all the answers
Breakdown of homeostatic regulation and failure of one or more organ systems
Breakdown of homeostatic regulation and failure of one or more organ systems
Signup and view all the answers
______ binding stimulates ______ by ATP.
______ binding stimulates ______ by ATP.
Signup and view all the answers
Adrenal medulla – Nervous tissue that functions as part of the Sympathetic Nervous System Secretes ______.
Adrenal medulla – Nervous tissue that functions as part of the Sympathetic Nervous System Secretes ______.
Signup and view all the answers
PRH stimulates the development of ______ glands and milk production in females.
PRH stimulates the development of ______ glands and milk production in females.
Signup and view all the answers
PIH inhibits the development of ______ glands and milk production.
PIH inhibits the development of ______ glands and milk production.
Signup and view all the answers
Oxytocin stimulates contraction cells in ______ glands and smooth muscle cells in the uterus.
Oxytocin stimulates contraction cells in ______ glands and smooth muscle cells in the uterus.
Signup and view all the answers
The thyroid gland produces hormones T3 and T4, which regulate ______.
The thyroid gland produces hormones T3 and T4, which regulate ______.
Signup and view all the answers
Parathyroid glands produce ______, which regulates calcium levels in the body.
Parathyroid glands produce ______, which regulates calcium levels in the body.
Signup and view all the answers
The adrenal glands consist of the adrenal medulla and ______.
The adrenal glands consist of the adrenal medulla and ______.
Signup and view all the answers
The adrenal medulla secretes catecholamines, such as epinephrine and ______.
The adrenal medulla secretes catecholamines, such as epinephrine and ______.
Signup and view all the answers
The hypothalamus, pituitary gland, pineal gland, thyroid gland, parathyroid gland, thymus, adrenal glands, pancreas, and ______ are all key players in the endocrine system.
The hypothalamus, pituitary gland, pineal gland, thyroid gland, parathyroid gland, thymus, adrenal glands, pancreas, and ______ are all key players in the endocrine system.
Signup and view all the answers
Hormones bind to their corresponding receptors and induce changes in the target cell's behavior, such as altering plasma membrane permeability, stimulating gene activation, and inducing ______ activity.
Hormones bind to their corresponding receptors and induce changes in the target cell's behavior, such as altering plasma membrane permeability, stimulating gene activation, and inducing ______ activity.
Signup and view all the answers
The nervous system can modify the stimulation of endocrine glands and their negative ______ mechanisms.
The nervous system can modify the stimulation of endocrine glands and their negative ______ mechanisms.
Signup and view all the answers
The hypothalamus regulates both the nervous and endocrine systems, secreting regulatory hormones that control the anterior pituitary gland and exerting direct neural control over the endocrine cells of the ______ medullae.
The hypothalamus regulates both the nervous and endocrine systems, secreting regulatory hormones that control the anterior pituitary gland and exerting direct neural control over the endocrine cells of the ______ medullae.
Signup and view all the answers
The pituitary gland releases nine important peptide hormones, is divided into the anterior pituitary (adenohypophysis) and posterior pituitary (neurohypophysis), and is attached to the hypothalamus by the ______.
The pituitary gland releases nine important peptide hormones, is divided into the anterior pituitary (adenohypophysis) and posterior pituitary (neurohypophysis), and is attached to the hypothalamus by the ______.
Signup and view all the answers
Paracrine communication refers to chemical messengers between cells within one tissue, while hormones are chemicals secreted into the bloodstream for transport to distant ______.
Paracrine communication refers to chemical messengers between cells within one tissue, while hormones are chemicals secreted into the bloodstream for transport to distant ______.
Signup and view all the answers
Tropic hormones stimulate the release of another hormone, while ______ hormones stimulate the growth and nourishment of a gland.
Tropic hormones stimulate the release of another hormone, while ______ hormones stimulate the growth and nourishment of a gland.
Signup and view all the answers
Rising blood levels of Thyrotropic hormone stimulates the normal development and secretory activity of ______ gland
Rising blood levels of Thyrotropic hormone stimulates the normal development and secretory activity of ______ gland
Signup and view all the answers
Adrenocorticotropic Hormone stimulates the release of ______ by the adrenal gland
Adrenocorticotropic Hormone stimulates the release of ______ by the adrenal gland
Signup and view all the answers
FSH stimulates gamete (egg or sperm) production and ______ secretion in females
FSH stimulates gamete (egg or sperm) production and ______ secretion in females
Signup and view all the answers
LH causes ovulation and ______ production in females
LH causes ovulation and ______ production in females
Signup and view all the answers
LH stimulates testes to produce ______ in males
LH stimulates testes to produce ______ in males
Signup and view all the answers
GHRH stimulates cell growth and replication by promoting the release of ______
GHRH stimulates cell growth and replication by promoting the release of ______
Signup and view all the answers
GHIH/ Somatost inhibits release of ______
GHIH/ Somatost inhibits release of ______
Signup and view all the answers
Cardiac impulse originates at ______ node
Cardiac impulse originates at ______ node
Signup and view all the answers
Action potential delayed at ______ node to ensure atrial contraction precedes ventricular contraction for complete ventricular filling
Action potential delayed at ______ node to ensure atrial contraction precedes ventricular contraction for complete ventricular filling
Signup and view all the answers
Impulse travels rapidly down ______ septum by means of bundle of His
Impulse travels rapidly down ______ septum by means of bundle of His
Signup and view all the answers
Autorhythmic cells have “drifting” resting potentials called ______ potentials
Autorhythmic cells have “drifting” resting potentials called ______ potentials
Signup and view all the answers
Large T ______
Large T ______
Signup and view all the answers
A long refractory period + prolonged plateau phase prevents summation and tetanus in ______
A long refractory period + prolonged plateau phase prevents summation and tetanus in ______
Signup and view all the answers
Action potential from autorhythmic cells is passed to contractile cells, propagating down ______
Action potential from autorhythmic cells is passed to contractile cells, propagating down ______
Signup and view all the answers
Gap junctions (instead of synapses) create fast cell-cell ______
Gap junctions (instead of synapses) create fast cell-cell ______
Signup and view all the answers
Intercalated discs allow branching of ______
Intercalated discs allow branching of ______
Signup and view all the answers
Pericardium, epicardium, myocardium, ______
Pericardium, epicardium, myocardium, ______
Signup and view all the answers
Sympathetic stimulation releases ______ and initiates a cAMP second-messenger system
Sympathetic stimulation releases ______ and initiates a cAMP second-messenger system
Signup and view all the answers
Preload – amount ventricles are stretched by contained blood ______
Preload – amount ventricles are stretched by contained blood ______
Signup and view all the answers
Afterload – back pressure exerted by blood in the large arteries leaving the heart ______
Afterload – back pressure exerted by blood in the large arteries leaving the heart ______
Signup and view all the answers
Intra- and extracellular ion concentrations must be maintained for normal heart ______
Intra- and extracellular ion concentrations must be maintained for normal heart ______
Signup and view all the answers
Increased force of contraction is a result of increased ______
Increased force of contraction is a result of increased ______
Signup and view all the answers
Blood loss and extremely rapid heartbeat cause ______ venous return
Blood loss and extremely rapid heartbeat cause ______ venous return
Signup and view all the answers
Heart rate is modified by the ______ nervous system
Heart rate is modified by the ______ nervous system
Signup and view all the answers
Epinephrine and ______ hormones increase heart rate and force of contraction
Epinephrine and ______ hormones increase heart rate and force of contraction
Signup and view all the answers
The SA node establishes the ______ heart rate
The SA node establishes the ______ heart rate
Signup and view all the answers
The hypothalamus releases hormones that stimulate the synthesis and release of hormones from the ______ pituitary
The hypothalamus releases hormones that stimulate the synthesis and release of hormones from the ______ pituitary
Signup and view all the answers
Cardiac muscle tissue forms the thick layer of ______ and is responsible for pumping blood through the heart.
Cardiac muscle tissue forms the thick layer of ______ and is responsible for pumping blood through the heart.
Signup and view all the answers
The chambers of the heart are separated by ______, including atrioventricular (AV) valves and semilunar valves.
The chambers of the heart are separated by ______, including atrioventricular (AV) valves and semilunar valves.
Signup and view all the answers
The heart receives oxygen-poor blood from the superior and inferior vena cava in the right atrium, and pumps it to the right ______.
The heart receives oxygen-poor blood from the superior and inferior vena cava in the right atrium, and pumps it to the right ______.
Signup and view all the answers
The right ventricle then pumps the blood to the pulmonary circuit through the pulmonary trunk and ______ valve.
The right ventricle then pumps the blood to the pulmonary circuit through the pulmonary trunk and ______ valve.
Signup and view all the answers
Oxygen-rich blood from the lungs enters the left ______, and is pumped to the left ventricle.
Oxygen-rich blood from the lungs enters the left ______, and is pumped to the left ventricle.
Signup and view all the answers
The left ventricle pumps the oxygen-rich blood to the systemic circuit through the aorta and ______ valve.
The left ventricle pumps the oxygen-rich blood to the systemic circuit through the aorta and ______ valve.
Signup and view all the answers
The heart has a specialized conduction system, including the SA node, AV node, and Purkinje fibers, which regulate the ______.
The heart has a specialized conduction system, including the SA node, AV node, and Purkinje fibers, which regulate the ______.
Signup and view all the answers
Abnormalities of the heart can include extrasystole, ventricular fibrillation, complete heart block, myocardial infarction, and congestive ______.
Abnormalities of the heart can include extrasystole, ventricular fibrillation, complete heart block, myocardial infarction, and congestive ______.
Signup and view all the answers
The phases of ventricular systole include ______ contraction and ventricular ejection.
The phases of ventricular systole include ______ contraction and ventricular ejection.
Signup and view all the answers
Cardiac output is the amount of blood pumped by each ventricle in one minute and is determined by heart rate and ______ volume.
Cardiac output is the amount of blood pumped by each ventricle in one minute and is determined by heart rate and ______ volume.
Signup and view all the answers
Study Notes
Anatomy and Function of the Heart
- The heart is composed of three layers: epicardium, myocardium, and endocardium.
- Cardiac muscle tissue forms the thick layer of myocardium and is responsible for pumping blood through the heart.
- The heart is divided into four chambers: right atrium, right ventricle, left atrium, and left ventricle.
- The chambers are separated by heart valves, including atrioventricular (AV) valves and semilunar valves.
- The heart receives oxygen-poor blood from the superior and inferior vena cava in the right atrium, and pumps it to the right ventricle.
- The right ventricle then pumps the blood to the pulmonary circuit through the pulmonary trunk and semilunar valve.
- Oxygen-rich blood from the lungs enters the left atrium, and is pumped to the left ventricle.
- The left ventricle pumps the oxygen-rich blood to the systemic circuit through the aorta and semilunar valve.
- The heart has a specialized conduction system, including the SA node, AV node, and Purkinje fibers, which regulate the heartbeat.
- Abnormalities of the heart can include extrasystole, ventricular fibrillation, complete heart block, myocardial infarction, and congestive heart failure.
- The phases of ventricular systole include isovolumic contraction and ventricular ejection.
- Cardiac output is the amount of blood pumped by each ventricle in one minute and is determined by heart rate and stroke volume. Cardiac reserve is the difference between resting and maximal cardiac output. Factors affecting cardiac output include heart rate, stroke volume, autonomous innervation, hormones, cardiac reflexes, and venous return.
Anatomy and Function of the Heart
- The heart is composed of three layers: epicardium, myocardium, and endocardium.
- Cardiac muscle tissue forms the thick layer of myocardium and is responsible for pumping blood through the heart.
- The heart is divided into four chambers: right atrium, right ventricle, left atrium, and left ventricle.
- The chambers are separated by heart valves, including atrioventricular (AV) valves and semilunar valves.
- The heart receives oxygen-poor blood from the superior and inferior vena cava in the right atrium, and pumps it to the right ventricle.
- The right ventricle then pumps the blood to the pulmonary circuit through the pulmonary trunk and semilunar valve.
- Oxygen-rich blood from the lungs enters the left atrium, and is pumped to the left ventricle.
- The left ventricle pumps the oxygen-rich blood to the systemic circuit through the aorta and semilunar valve.
- The heart has a specialized conduction system, including the SA node, AV node, and Purkinje fibers, which regulate the heartbeat.
- Abnormalities of the heart can include extrasystole, ventricular fibrillation, complete heart block, myocardial infarction, and congestive heart failure.
- The phases of ventricular systole include isovolumic contraction and ventricular ejection.
- Cardiac output is the amount of blood pumped by each ventricle in one minute and is determined by heart rate and stroke volume. Cardiac reserve is the difference between resting and maximal cardiac output. Factors affecting cardiac output include heart rate, stroke volume, autonomous innervation, hormones, cardiac reflexes, and venous return.
Overview of the Endocrine System and Hormones
- The endocrine system includes all cells and endocrine tissues that produce hormones or paracrine factors.
- The endocrine system regulates long-term ongoing metabolic activity management, while the nervous system performs short-term crisis management.
- The endocrine system functions include maintaining an optimal biochemical environment within the body, influencing metabolic activities, and controlling growth, development, and sexual reproduction.
- The endocrine system consists of various glands, including the hypothalamus, pituitary, pineal, thyroid, parathyroid, thymus, adrenal, pancreas, and gonads.
- Hormones are chemicals secreted by cells into the bloodstream for transport to distant target tissues, where they bind to specific receptors and induce cellular changes.
- Hormones can be classified based on their chemical composition, such as amino acid derivatives, protein derivatives, and lipid derivatives.
- Amino acid derivatives include tyrosine-based hormones like catecholamines and thyroid hormones, and tryptophan-based hormones like serotonin and melatonin.
- Protein derivatives include glycoproteins and short polypeptides/small proteins, which have various functions in the body.
- Lipid derivatives include steroids, such as androgens, estrogens, progestins, mineralocorticoids, glucocorticoids, and calcitriol, as well as eicosanoids.
- Hormones can also be classified based on the location of their receptors, such as membrane receptors, second messenger systems, tyrosine kinase-linked receptors, hormone-gated ion channels, and intracellular and intranuclear receptors.
- Hormones can have different cellular responses, such as altering plasma membrane permeability, stimulating gene activation and protein synthesis, activating or deactivating enzyme systems, inducing secretory activity, and stimulating mitosis and cytokinesis.
- Hormone concentrations in the blood are controlled by negative feedback systems and vary within a narrow desirable range. Hormones are synthesized and released in response to humoral, hormonal, and neural stimuli. Humoral stimuli detect blood solutes, hormonal stimuli detect blood hormones, and neural stimuli are stimulated by action potentials from the central nervous system.
Functions and Hormones of the Hypothalamus and Pituitary Gland
- The pituitary gland is divided into two parts: the anterior pituitary or adenohypophysis, and the posterior pituitary or neurohypophysis.
- The hypothalamus controls the release of hormones from the pituitary gland by sending chemical stimuli.
- The anterior pituitary synthesizes and releases six hormones: TSH, PRL, GH, ACTH, FSH, and LH.
- The posterior pituitary stores and releases two hormones: oxytocin and vasopressin (ADH).
- The hypothalamus releases hormones that stimulate the synthesis and release of hormones from the anterior pituitary.
- Hypothalamic hormones include TRH, CRH, GnRH, GHRH, and PRH, which regulate the release of TSH, ACTH, FSH, LH, and PRL, respectively.
- The hypothalamus also releases inhibiting hormones, such as dopamine, that inhibit the release of certain hormones from the anterior pituitary.
- The pituitary gland is attached to the hypothalamus by the infundibulum.
- The anterior pituitary, or adenohypophysis, contains five different types of endocrine cells that secrete hormones like GH, PRL, TSH, ACTH, FSH, and LH.
- Tropic hormones released by the anterior pituitary, like TSH, ACTH, FSH, and LH, regulate the secretion of hormones by other endocrine glands.
- The hypothalamus also synthesizes and releases two neurohormones, oxytocin and vasopressin, which are stored and released by the posterior pituitary.
- Neurohormones are hormones released by neurons into the bloodstream to target distant cells.
The Endocrine System: Key Players and Functions
- The endocrine system includes all cells and tissues that produce hormones or paracrine factors.
- Its functions include maintaining an optimal biochemical environment, influencing metabolic activities, regulating growth and development, and controlling sexual reproduction.
- Paracrine communication refers to chemical messengers between cells within one tissue, while hormones are chemicals secreted into the bloodstream for transport to distant target tissues.
- Up-regulation is when target cells form more receptors in response to a hormone, while down-regulation is when target cells lose receptors in response to a hormone.
- Tropic hormones stimulate the release of another hormone, while trophic hormones stimulate the growth and nourishment of a gland.
- Stress refers to any condition that threatens homeostasis, and neurohormones are hormones released and secreted by neurons into the bloodstream to target distant cells.
- The hypothalamus, pituitary gland, pineal gland, thyroid gland, parathyroid gland, thymus, adrenal glands, pancreas, and gonads are all key players in the endocrine system.
- Hormones bind to their corresponding receptors and induce changes in the target cell's behavior, such as altering plasma membrane permeability, stimulating gene activation, and inducing secretory activity.
- Hormone concentrations in the blood reflect the rate of release and the speed of inactivation and removal from the body.
- The nervous system can modify the stimulation of endocrine glands and their negative feedback mechanisms.
- The hypothalamus regulates both the nervous and endocrine systems, secreting regulatory hormones that control the anterior pituitary gland and exerting direct neural control over the endocrine cells of the adrenal medullae.
- The pituitary gland releases nine important peptide hormones, is divided into the anterior pituitary (adenohypophysis) and posterior pituitary (neurohypophysis), and is attached to the hypothalamus by the infundibulum.
Anatomy and Function of the Heart
- The heart is composed of three layers: epicardium, myocardium, and endocardium.
- Cardiac muscle tissue forms the thick layer of myocardium and is responsible for pumping blood through the heart.
- The heart is divided into four chambers: right atrium, right ventricle, left atrium, and left ventricle.
- The chambers are separated by heart valves, including atrioventricular (AV) valves and semilunar valves.
- The heart receives oxygen-poor blood from the superior and inferior vena cava in the right atrium, and pumps it to the right ventricle.
- The right ventricle then pumps the blood to the pulmonary circuit through the pulmonary trunk and semilunar valve.
- Oxygen-rich blood from the lungs enters the left atrium, and is pumped to the left ventricle.
- The left ventricle pumps the oxygen-rich blood to the systemic circuit through the aorta and semilunar valve.
- The heart has a specialized conduction system, including the SA node, AV node, and Purkinje fibers, which regulate the heartbeat.
- Abnormalities of the heart can include extrasystole, ventricular fibrillation, complete heart block, myocardial infarction, and congestive heart failure.
- The phases of ventricular systole include isovolumic contraction and ventricular ejection.
- Cardiac output is the amount of blood pumped by each ventricle in one minute and is determined by heart rate and stroke volume. Cardiac reserve is the difference between resting and maximal cardiac output. Factors affecting cardiac output include heart rate, stroke volume, autonomous innervation, hormones, cardiac reflexes, and venous return.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
Test your knowledge of the anatomy and function of the heart with this informative quiz. Learn about the layers, chambers, valves, and conduction system of the heart, as well as common abnormalities and factors affecting cardiac output.