Test Your Linear Algebra Skills

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Koja je formula korištena za pronalaženje matrice ortogonalne projekcije P na stupčani prostor matrice A u Problemu 1?

  • Formula za skalarni produkt
  • Formula iz LADW-a (correct)
  • Formula za vektorski produkt
  • Formula za determinantu

Koji je cilj Problema 2?

  • Pronaći linearnu jednadžbu koja najbolje odgovara skupu podataka korištenjem najmanjih kvadrata (correct)
  • Pronaći matricu ortogonalne projekcije
  • Pronaći kvadratnu jednadžbu koja najbolje odgovara skupu podataka korištenjem najmanjih kvadrata
  • Pokazati da je ker(A) = ker(A*A

Što je potrebno da bi se tvrdilo da je A*A invertibilna u Problemu 4?

  • A*A mora imati rang manji od n
  • A*A mora imati rang n (correct)
  • Ker(A) mora biti suprotno proporcionalan Ker(A*A
  • Ker(A) mora biti jednak Ker(A*A

Flashcards are hidden until you start studying

Study Notes

  1. The text provides four problems related to linear algebra.
  2. Problem 1 involves finding the matrix of the orthogonal projection P onto the column space of a given matrix A.
  3. The projection matrix P is found using a formula from LADW.
  4. The size of P is not necessarily 3x2 even though the column space of A has dimension 2.
  5. The geometric meaning of |X - Px| is not specified.
  6. Problem 2 involves finding the linear equation that best fits a given set of data using least squares.
  7. Problem 3 involves finding the quadratic equation that best fits a given set of data using least squares.
  8. Problem 4 involves showing that ker(A) = ker(A*A).
  9. Ker(A) = ker(AA) implies that AA is invertible if and only if A has rank n.
  10. The invertibility of AA is important for solving the normal equation AAx - A*b.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team
Use Quizgecko on...
Browser
Browser