System of Linear Equations: Substitution Method
8 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the first step in solving a system of linear equations using the substitution method?

Solve one equation for one variable

What is the purpose of performing row operations when using the matrix method to solve a system of linear equations?

To transform the matrix into upper triangular form

In the elimination method, why do we multiply the equations by necessary multiples?

To make the coefficients of one variable the same

What is the last step in solving a system of linear equations using the substitution method?

<p>Back-substitute to find the value of the first variable</p> Signup and view all the answers

How do we write a system of linear equations as an augmented matrix for the matrix method?

<p>[A | b]</p> Signup and view all the answers

What do we do after eliminating one variable using the elimination method?

<p>Solve for the remaining variable, then back-substitute to find the value of the eliminated variable</p> Signup and view all the answers

Why do we need to solve for one variable first when using the substitution method?

<p>To substitute the expression into the other equation(s)</p> Signup and view all the answers

What is the advantage of using the matrix method to solve a system of linear equations?

<p>It can be easily extended to solve systems with more than two variables</p> Signup and view all the answers

Study Notes

System of Linear Equations

A system of linear equations consists of two or more linear equations with variables and coefficients.

Substitution Method

  • Solve one equation for one variable
  • Substitute the expression into the other equation(s)
  • Solve for the remaining variable(s)
  • Back-substitute to find the value of the first variable

Example: 2x + 3y = 7 x - 2y = -3

  • Solve the first equation for x: x = 7 - 3y
  • Substitute into the second equation: (7 - 3y) - 2y = -3
  • Solve for y, then back-substitute to find x

Matrix Method

  • Write the system as an augmented matrix: [A | b]
  • Perform row operations to transform the matrix into upper triangular form
  • Solve for the variables by back-substitution

Example: 2x + 3y = 7 x - 2y = -3

  • Augmented matrix: [[2, 3 | 7], [1, -2 | -3]]
  • Perform row operations to get the matrix into upper triangular form
  • Solve for x and y by back-substitution

Elimination Method

  • Multiply the equations by necessary multiples such that the coefficients of one variable are the same
  • Add or subtract the equations to eliminate one variable
  • Solve for the remaining variable
  • Back-substitute to find the value of the eliminated variable

Example: 2x + 3y = 7 x - 2y = -3

  • Multiply the first equation by 1 and the second equation by 2: 2x + 3y = 7, 2x - 4y = -6
  • Subtract the equations to eliminate x: 7y = 13
  • Solve for y, then back-substitute to find x

System of Linear Equations

  • A system of linear equations consists of two or more linear equations with variables and coefficients.

Substitution Method

  • To solve a system of linear equations using the substitution method, solve one equation for one variable.
  • Substitute the expression into the other equation(s).
  • Solve for the remaining variable(s).
  • Back-substitute to find the value of the first variable.

Matrix Method

  • Write the system as an augmented matrix: [A | b].
  • Perform row operations to transform the matrix into upper triangular form.
  • Solve for the variables by back-substitution.

Elimination Method

  • Multiply the equations by necessary multiples such that the coefficients of one variable are the same.
  • Add or subtract the equations to eliminate one variable.
  • Solve for the remaining variable.
  • Back-substitute to find the value of the eliminated variable.
  • The elimination method involves making the coefficients of one variable the same, then adding or subtracting the equations to eliminate that variable.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Learn how to solve systems of linear equations using the substitution method, a step-by-step approach to finding variable values.

More Like This

Use Quizgecko on...
Browser
Browser