Podcast
Questions and Answers
The tropical rainforests cover about seven per cent of the Earth's land but are home to more than ______ of the total planet, animal and insect species.
The tropical rainforests cover about seven per cent of the Earth's land but are home to more than ______ of the total planet, animal and insect species.
half
In tropical grasslands or savannas, plants experience high temperatures all year round with distinct wet and ______ seasons.
In tropical grasslands or savannas, plants experience high temperatures all year round with distinct wet and ______ seasons.
dry
Most coniferous trees are ______, which means that they do not shed their leaves.
Most coniferous trees are ______, which means that they do not shed their leaves.
evergreen
The trees are resinous, thick and sticky-like substance to protect the trees from the bitter ______ in winter.
The trees are resinous, thick and sticky-like substance to protect the trees from the bitter ______ in winter.
The branches are strong but supple so that they do not ______ under the weight of the snow.
The branches are strong but supple so that they do not ______ under the weight of the snow.
Polar regions experience extremely cold temperatures, which do not support ______ growth.
Polar regions experience extremely cold temperatures, which do not support ______ growth.
The ______ are small needle-like and waxy to prevent loss of moisture through transpiration during winter.
The ______ are small needle-like and waxy to prevent loss of moisture through transpiration during winter.
The continuous forests do not have a layered structure like that in the tropical rainforests; only one variety of trees in an area. This number of species rarely exceeds three per square ______.
The continuous forests do not have a layered structure like that in the tropical rainforests; only one variety of trees in an area. This number of species rarely exceeds three per square ______.
Trees shed their ______ to prevent loss of water through transpiration during autumn.
Trees shed their ______ to prevent loss of water through transpiration during autumn.
The fallen leaves decompose to become ______ for the trees and plants.
The fallen leaves decompose to become ______ for the trees and plants.
Flashcards
Temperature
Temperature
The temperature at which photosynthesis takes place. Ranging from near zero to about 50°C.
Sunlight
Sunlight
Essential for photosynthesis in plants. Natural vegetation responds to the amount of sunlight available.
Earth's main ecosystems
Earth's main ecosystems
Forest biomes, grassland biomes, and desert biomes. Regions where trees predominate will be a forest biome.
Trees and other plants adaptations
Trees and other plants adaptations
Signup and view all the flashcards
Root System adaptation
Root System adaptation
Signup and view all the flashcards
Coniferous forests
Coniferous forests
Signup and view all the flashcards
Leaves Adaptation
Leaves Adaptation
Signup and view all the flashcards
Soil Characteristics in polar regions
Soil Characteristics in polar regions
Signup and view all the flashcards
Temperate deciduous forests
Temperate deciduous forests
Signup and view all the flashcards
Tropical monsoon forests
Tropical monsoon forests
Signup and view all the flashcards
Study Notes
- Supply Chain (SC): A comprehensive system that includes organizations, people, activities, information, and resources involved in taking products from suppliers to customers.
- Supply Chain Management (SCM): Overseeing the flow of goods and services to maximize efficiency and customer satisfaction.
Importance of SCM
- Improves operational efficiency
- Reduces costs
- Enhances customer satisfaction
- Provides a competitive advantage
Key SCM Components
- Planning: Includes demand forecasting and capacity planning
- Sourcing: Involves selecting suppliers and contract negotiation
- Making: Encompasses production scheduling and quality control
- Delivering: Deals with logistics and distribution
- Returning: Manages returns and customer support
Main Flows of a Supply Chain
- Material Flow: The movement of raw materials, components, and finished goods
- Information Flow: The exchange of order information, demand forecasts, and inventory levels
- Financial Flow: Credit terms, payment schedules, and ownership arrangements
SCM Strategies
Inventory Management
- Just-in-Time (JIT): Aims to minimize inventory levels, reduce waste, and increase efficiency
- Vendor-Managed Inventory (VMI): The supplier manages inventory levels at the customer's location to improve turnover and reduce stockouts
Lean Manufacturing
- Focused on eliminating waste, improving efficiency, and prioritizing customer value
Agile Supply Chain
- Designed to quickly respond to demand changes with flexibility and adaptability
Bullwhip Effect
- Small demand fluctuations at retail level causing progressively larger fluctuations up the supply chain
Causes
- Lack of Information Sharing
- Order Batching
- Price Fluctuations
- Rationing and Shortage Gaming
Solutions
- Information Sharing
- Channel Alignment
- Operational Efficiency
SCM Technologies
Enterprise Resource Planning (ERP)
- Integrates all business aspects for improved data visibility and process automation
Customer Relationship Management (CRM)
- Manages customer interactions, improves satisfaction, and increases sales
SCM Software
- Manages the supply chain to improve efficiency and reduce costs
SCM Challenges
- Complexity
- Uncertainty
- Sustainability
Future of SCM
- Digitalization for greater visibility and responsiveness
- Automation to streamline operations
- Sustainability to minimize environmental impact
Chemical Reaction Engineering
- Chapter 18 focuses on the resistance to mass transfer in chemical reactions
Film Theory
Foundation and Core Idea
- Based on Whitman's work (1923)
- Suggests a stagnant film present at the interface through which mass must be transferred
Film Theory Assumptions
- Mass transfer happens through molecular diffusion in a stagnant film
- Absence of convection within the film
- Linear concentration gradient inside the film
- Equilibrium maintenance at the interface
Mass Transfer Rate
- $N_A = k_g(p_A - p_{Ai}) = k_l(c_{Ai} - c_A)$
- $N_A$ = molar flux of component A
- $k_g$, $k_l$ = gas and liquid phase mass transfer coefficients
- $p_A$, $c_A$ = bulk phase concentrations
- $p_{Ai}$, $c_{Ai}$ = interfacial concentrations
Overall Mass Transfer Coefficient
- $N_A = K_g(p_A - p_A^) = K_l(c_A^ - c_A)$
- $K_g$, $K_l$ = overall gas and liquid mass transfer coefficients
- $p_A^$, $c_A^$ = hypothetical concentrations in equilibrium with $c_A$ and $p_A$
Coefficient Relationship
- $\frac{1}{K_g} = \frac{1}{k_g} + \frac{H}{k_l}$
- $\frac{1}{K_l} = \frac{1}{Hk_g} + \frac{1}{k_l}$
- $H$ = Henry's Law constant
Penetration Theory
Origin and Primary Concept
- Introduced by Higbie (1935)
- Involves unsteady-state diffusion into a liquid element
Penetration Theory Assumptions
- Diffusion under unsteady-state conditions in a liquid element at the interface
- Consistent exposure time for each liquid element at the surface
- Preservation of equilibrium at interface
- Surface element replaced by fresh liquid from bulk
Mass Transfer Rate
- $N_A = \sqrt{\frac{D_A}{\pi t_e}}(c_{Ai} - c_A)$
- $t_e$ = exposure time
Surface Renewal Theory
Background and Basic Principle
- Proposed by Danckwerts (1951)
- Centers around unsteady-state diffusion into a liquid element at the interface
Theory Assumptions
- Unsteady-state diffusion into a liquid element for brief exposure at an interface
- $\phi(t) = se^{-st}$ age distribution function for residence times
- Maintenance of equilibrium at the interface
Mass Transfer Rate
- $N_A = \sqrt{D_A s}(c_{Ai} - c_A)$
- $s$ = fractional rate of surface renewal
October 29, 2012 - Lecture 21 Review
- Differentiability definition for $f: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ at a uses a linear transformation T
Differentiability Criteria
- $\lim_{\mathbf{h} \rightarrow \mathbf{0}} \frac{\mathbf{f(a + h)} - \mathbf{f(a)} - T(\mathbf{h})}{||\mathbf{h}||} = \mathbf{0}$
- Jacobian Matrix: $\mathbf{f'(a)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{a})\ \vdots & \ddots & \vdots\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{bmatrix}$
Chain Rule
- If $\mathbf{f}: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ is differentiable at $\mathbf{a}$, and $\mathbf{g}: B \subseteq \mathbb{R}^m \rightarrow \mathbb{R}^k$ is differentiable at $\mathbf{f(a)}$, and $\mathbf{f(A)} \subseteq B$, then $\mathbf{g \circ f}: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^k$ differentiable at $\mathbf{a}$
- $(\mathbf{g \circ f})'(\mathbf{a}) = \mathbf{g'(f(a))} \mathbf{f'(a)}$
Alternate Notation
- If $\mathbf{y} = \mathbf{f(x)}$ and $\mathbf{z} = \mathbf{g(y)}$, then $\frac{d\mathbf{z}}{d\mathbf{x}} = \frac{d\mathbf{z}}{d\mathbf{y}} \frac{d\mathbf{y}}{d\mathbf{x}}$
Example Task
- Finding partial derivatives with variable substitutions e.g., converting $z=f(x, y)$ to polar by using $x = r\cos\theta$, $y = r\sin\theta$
Solution Examples
- $\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \cos\theta + \frac{\partial z}{\partial y} \sin\theta$
- $\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} (-r\sin\theta) + \frac{\partial z}{\partial y} (r\cos\theta)$
Higher Order Derivatives
- For $f: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$, if $\frac{\partial f}{\partial x_i}$ is differentiable
Notation
- The notation for second-order partial derivative: $\frac{\partial}{\partial x_j} \left( \frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_j \partial x_i}$
Clairaut's Theorem
- If $\frac{\partial^2 f}{\partial x_j \partial x_i}$ and $\frac{\partial^2 f}{\partial x_i \partial x_j}$ are continuous, $\frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{a}) = \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a})$
Example
- Deriving mixed partial derivatives, showing derivatives are equal
Derived Equations
- $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = 2x + e^{xy} + xy e^{xy} - 2x\sin(x^2 + y)$
- $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) = 2x + e^{xy} + xe^{xy} - 2x\sin(x^2 + y)$
Taylor's Theorem
- Describes function approximation using derivatives at a single point
Univariable case
- $f(x) = f(a) + f'(a)(x - a) + \varphi_a (x) (x - a)$ with $\lim_{x \rightarrow a} \varphi_a(x) = 0$
Further function approximation
- $f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \psi_a(x) (x - a)^2$ with $\lim_{x \rightarrow a} \psi_a(x) = 0$
Multivariable Version
- Expands around a point with partial derivatives and a remainder term
Multivariable Theorem
${f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{a})(x_i - a_i) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a})(x_i - a_i)(x_j - a_j) + \Psi_{\mathbf{a}}(\mathbf{x}) ||\mathbf{x - a}||^2}$
$\lim_{\mathbf{x} \rightarrow \mathbf{a}} \Psi_{\mathbf{a}}(\mathbf{x}) = 0$
Quadratic Form
- Expression involving second-order terms.
Quadratic Form Equation
- $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ where $A$ is a symmetric matrix
Rewritten Taylor’s Theorem
- Taylor’s theorem can be rewritten as $f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{a})(x_i - a_i) + \frac{1}{2} (\mathbf{x - a})^T H_{\mathbf{a}} (\mathbf{x - a}) + \Psi_{\mathbf{a}}(\mathbf{x}) ||\mathbf{x - a}||^2$
Física - Tarea 1
Problemas a Resolver
-
Peso en la Luna:
- Gravedad en la Luna ($g_L$) = $1.62 \ m/s^2$
- Peso en la Tierra ($P_T$) = 900 N
- Determinar el peso en la Luna ($P_L$)
Ecuación: $P_L = m \cdot g_L$, donde $m = \frac{P_T}{g_T}$ y $g_T = 9.8 \ m/s^2$ (gravedad en la Tierra)
-
Análisis Dimensional:
- Demostrar dimensionalmente que $x = v_0t + \frac{1}{2}at^2$ es correcta.
Análisis:
- $[x] = L$ (Longitud)
- $[v_0t] = LT^{-1} \cdot T = L$
- $[\frac{1}{2}at^2] = LT^{-2} \cdot T^2 = L$
Conclusión: La suma de términos con dimensión de longitud resulta en una longitud; por lo tanto, es dimensionalmente correcta.
-
Movimiento en Dos Dimensiones:
- Parte 1: Velocidad hacia el este ($v_E$) = $50 \ km/h$ durante 1 hora.
- Parte 2: Velocidad hacia el norte ($v_N$) = $80 \ km/h$ durante 30 minutos (0.5 horas).
a) Distancias recorridas:
- Distancia al este ($d_E$) = $v_E \cdot t_E = 50 \ km$
- Distancia al norte ($d_N$) = $v_N \cdot t_N = 40 \ km$
b) Velocidad media en todo el recorrido:
- Desplazamiento total ($\vec{d}$) = $\sqrt{d_E^2 + d_N^2} = \sqrt{50^2 + 40^2} \ km$
- Tiempo total ($t_{total}$) = 1 hora + 0.5 horas = 1.5 horas
- Velocidad media ($\vec{v}{avg}$) = $\frac{\vec{d}}{t{total}}$
c) Rapidez media en todo el recorrido:
- Distancia total ($d_{total}$) = $d_E + d_N = 50 + 40 \ km$
- Rapidez media ($v_{avg}$) = $\frac{d_{total}}{t_{total}}$
-
Vectores en Componentes:
- $\vec{A}$ componentes: $A_x = -8.7 \ cm$, $A_y = 15 \ cm$
- $\vec{B}$ componentes: $B_x = 13.2 \ cm$, $B_y = -6.6 \ cm$
- $\vec{A} - \vec{B} + 3\vec{C} = 0$, encontrar las componentes de $\vec{C}$ $\vec{C} = \frac{\vec{B} - \vec{A}}{3}$
-
Movimiento Acelerado en Dos Dimensiones:
- Velocidad inicial ($\vec{v}_0$) = $2.0 \times 10^6 \ m/s$ en la dirección x
- Aceleración constante ($\vec{a}$) = $3.0 \times 10^{12} \ m/s^2$ en la dirección y
- Coordenada x del electrón = 4.0 cm
Fórmulas:
- $x = v_{0x} \cdot t$, encontrar $t$ usando $x = 0.04 \ m$
- $y = v_{0y} \cdot t + \frac{1}{2} a_y t^2$, calcular $y$ usando el valor de $t$ obtenido.
Heat Transfer
- Heat transfer is the thermal energy in transit due to a temperature difference.
Heat Transfer Modes
Conduction
- Energy transfer between particles due to interactions
- Fourier's Law, $\dot{q}_x'' = -k\frac{dT}{dx}$
- $\dot{q}_x''$ is heat flux in $\left[\frac{W}{m^2}\right]$
- $k$ is thermal conductivity in $\left[\frac{W}{mK}\right]$
- $\frac{dT}{dx}$ is temperature gradient in $\left[\frac{K}{m}\right]$
Convection
- Energy transfer between surface and moving fluid at different temperatures
- Newton's Law of Cooling, $\dot{q}'' = h(T_s - T_{\infty})$
- $\dot{q}''$ is heat flux in $\left[\frac{W}{m^2}\right]$
- $h$ is convection heat transfer coefficient in $\left[\frac{W}{m^2K}\right]$
- $T_s$ is surface temperature in $[K]$
- $T_{\infty}$ is fluid temperature in $[K]$
Radiation
- Energy emitted due matter due to change in electron configurations
- Stefan-Boltzmann Law, $\dot{q}'' = \epsilon \sigma T_s^4$
- $\dot{q}''$ is heat flux in $\left[\frac{W}{m^2}\right]$
- $\epsilon$ is emissivity of the surface
- $\sigma$ is Stefan-Boltzmann constant, $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2K^4}$
- $T_s$ is surface temperature in $[K]$
Other Terms
Thermal Resistance
- Calculated with formula $R = \frac{\Delta T}{\dot{Q}}$
- $R$ is the thermal resistance in $\left[\frac{K}{W}\right]$
- $\Delta T$ is the temperature difference in $[K]$
- $\dot{Q}$ is the heat transfer rate in $[W]$
Contact Resistance
- It exists when two materials are in contact due to imperfect surface contact
- It can be minimized by using using thermal grease
Overall Heat Transfer Coefficient
- Calculated with formula $U = (\frac{1}{h_i} + \sum \frac{L}{k} + \frac{1}{h_o})^{-1}$ $U$: overall heat transfer coefficient $\left[\frac{W}{m^2K}\right]$
- $h_i$: inner heat transfer coefficient $\left[\frac{W}{m^2K}\right]$
- $L$: thickness of the material $[m]$
- $k$: thermal conductivity $\left[\frac{W}{mK}\right]$
- $h_o$: outer heat transfer coefficient $\left[\frac{W}{m^2K}\right]$
What is Economics?
- The study of how societies use scarce resources to make valuable goods and services
- How they distribute them among different individuals
Key Ideas
- Resources or goods are limited or scarce
- Society must make efficient use of limited resources
Branches of Economics
- Microeconomics: Focuses on behavior of aspects of an economy, such as markets, firms, and households.
- Macroeconomics: Concentrates on overall performance of the economy.
Central Questions of Economics
- What goods and services are produced, and in what quantities?
- How are these goods produced?
- For whom are the goods produced; how are they distributed?
Economic Types
- Market Economy: Resources allocated via markets where individuals and firms voluntarily agree to exchange goods and usually through monetary payment.
- Authoritarian Economy: The government makes most economic decisions.
- Mixed Economies: Combines market and authoritarian economics
Technological Possibilities of Society
- Every economy is limited by resources like labor, technical knowledge, and capital.
Inputs and Products
- Inputs: Services that are used to create goods and services
- Products: Resulting goods or services from the production process, consumed or used for further production
Production Possibility Frontier (PPF)
- Represents maximum quantities an economy can produce, given its technological knowledge and quantity of inputs
Example
- A point system represents examples of what resources can be dedicated to and what they can output (listed in document)
Key Terms
- Opportunity Cost: The value of the next best alternative when making a decision.
- Efficiency: When the most output is being created with the least amount of resources
Efficiency
- Productive Efficiency:* Achieved when economy cannot produce more of one good without reducing production of another; economy located on its PPF.
Unidad 1: Vectores
- Introducción a las magnitudes físicas y operaciones vectoriales.
1.1 Magnitudes Escalares y Vectoriales
- Distinción entre magnitudes que se describen con un valor y aquellas que requieren dirección y sentido.
Magnitud Escalar
- Definición: Queda completamente determinada con un número y sus unidades. Ejemplos: Masa, temperatura, energía, tiempo, volumen, densidad.
Magnitud Vectorial
- Definición: Requiere módulo, dirección y sentido. Ejemplos: Velocidad, aceleración, fuerza, peso, desplazamiento, impulso.
1.2 Representación de Vectores
- Formas de representar vectores geométrica y analíticamente.
Geométrica
- Un vector es una flecha con: Módulo, dirección, sentido y punto de aplicación. Descripción: $\vec{A}$ = Vector A. $|\vec{A}| = A =$ Módulo del vector A
Analítica
- Se representa con sus componentes en un sistema de coordenadas. Tipos:
- Cartesianas: $\vec{A} = (A_x, A_y, A_z)$.
- Polares:* $\vec{A} = (A, θ)$.
Relación entre coordenadas cartesianas y polares
$A_x = A \cdot cos θ$, $A_y = A \cdot sen θ$, $A = \sqrt{A_x^2 + A_y^2}$, $θ = arctan (\frac{A_y}{A_x})$.
Vectores unitarios cartesianos
Vectores de módulo 1 en la dirección de los ejes coordenados ($\hat{i}, \hat{j}, \hat{k}$).
Expresión de un Vector
- Mediante vectores unitarios cartesianos: $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$.
1.3 Operaciones con Vectores
- Suma, resta, producto escalar y vectorial.
Suma de vectores
- Gráfica: Métodos del paralelogramo y poligonal.
- Analítica:* Sumar las componentes correspondientes.
- $\vec{A} + \vec{B} = (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j}$.
Resta de Vectores
- Restar las componentes correspondientes: $\vec{A} - \vec{B} = (A_x - B_x) \hat{i} + (A_y - B_y) \hat{j}$.
Producto de un Escalar por un Vector
- El producto de un escalar por un vector da otro vector con la misma dirección pero diferente módulo.
- $k \vec{A} = k A_x \hat{i} + k A_y \hat{j}$
Producto Escalar (Producto Punto)
- Definición: Da como resultado un escalar. Fórmulas: $\vec{A} \cdot \vec{B} = A B cos θ = A_x B_x + A_y B_y$.
Propiedades del Producto Escalar
Conmutativa y distributiva; vectores perpendiculares si el producto es cero; vectores unitarios ($\hat{i} \cdot \hat{i} = 1$, $\hat{i} \cdot \hat{j} = 0$).
Producto Vectorial (Producto Cruz)
- Definición: Resulta en un vector perpendicular a ambos vectores originales. Fórmulas:
- $\vec{A} \times \vec{B} = A B sen θ \hat{n}$. $\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j} + (A_x B_y - A_y B_x) \hat{k}$.
Propiedades del Producto Vectorial
- No conmutativo, distributivo; vectores paralelos si el producto es cero; vectores unitarios ($\hat{i} \times \hat{i} = 0$, $\hat{i} \times \hat{j} = \hat{k}$).
Fonction Exponentielle : Study notes
I. Définition
- The exponential function (exp) is the only differentiable function on $\mathbb{R}$.
- It is defined with $\exp' = \exp$ and $\exp(0) = 1$.
- For real number x, $\exp(x) = e^x$ with $e = \exp(1) \approx 2.718$.
II. Propriétés
1. Propriétés Algébriques
- For real numbers $x$ and $y$:
- $e^{x+y} = e^x \times e^y$
- $e^{x-y} = \frac{e^x}{e^y}$
- $e^{-x} = \frac{1}{e^x}$
- $(e^x)^y = e^{xy}$
2. Propriétés Analytiques
- The exponential function is positive on $\mathbb{R}$. For all real numbers $x, e^x > 0$
- It is strictly increasing on $\mathbb{R}$.
- $\lim_{x \to -\infty} e^x = 0$
- $\lim_{x \to +\infty} e^x = +\infty$
3. Dérivée
- The exponential function is differentiable on $\mathbb{R}$, and its derivative is itself: $(e^x)' = e^x$
- More generally, if $u$ is a differentiable function on an interval $I \Rightarrow (e^u)' = u'e^u$
4. Représentation Graphique
- The graph of the exponential function is above the x-axis and increasing.
- It passes through the point $(0; 1)$.
5. Équations et Inéquations
- For real numbers $x$ and $y$:
- $e^x = e^y \Leftrightarrow x = y$
- $e^x < e^y \Leftrightarrow x < y$
- $e^x > e^y \Leftrightarrow x > y$
III. Exercices Types
1. Résolution d'équations
- Example: Solve equation $e^{x^2 - x} = 1$.
- $0$ and $1$ are the solutions.
2. Dérivation de fonctions
- Example: Let $f(x) = e^{x^2 + 1}$
- Calculate $f'(x)$
- Sol: $f'(x) = (x^2 + 1)' e^{x^2 + 1} = 2x e^{x^2 + 1}$
3. Limites de fonctions
- Example: Limit calculation $\lim_{x \to +\infty} e^{-x}$.
- Sol: $\lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$ since $\lim_{x \to +\infty} e^x = +\infty$.
Lecture 19: Mutual Information
Motivation
- Measuring how much one random variable tells about another
- Measuring uncertainty reduction about one random variable (Y) given another (X)
Quantified by
- Mutual Information
Definition 1
- $I(X; Y) = H(Y) - H(Y|X)$
- $H(Y)$ is the entropy of Y
- $H(Y|X)$ conditional entropy of Y given X
Definition 2
- $I(X;Y) = H(X) - H(X|Y)$
- $H(X)$ is the entropy of X
- $H(X|Y)$ is the conditional entropy of X given Y
Definition 3
- $I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) log\frac{p(x,y)}{p(x)p(y)}$
- $\mathcal{X}$ support of X, $\mathcal{Y}$ support of Y
- $p(x,y)$ joint pmf of X and Y
- $p(x)$ marginal pmf of X, $p(y)$ marginal pmf of Y
Example 1 Binary symmetric channel (BSC) with crossover probability ϵ
- $X \in {0,1}$ Input
- $Y \in {0,1}$ Output
- $p(Y=1|X=0) = \epsilon \text{ Noise}$
Example Question
- Assume $X \sim \text{Bernoulli}(\frac{1}{2})$, i.e., $p(X=0) = p(X=1) = \frac{1}{2}$. What is $I(X;Y)$?
Answer
- The answer is $I(X;Y) = 1 - H(\epsilon)$
Properties of Mutual Information
- $I(X;Y) = I(Y;X)$ (Symmetry)
- $I(X;Y) \geq 0$
- $I(X;Y) = H(X) + H(Y) - H(X,Y)$
- $I(X;X) = H(X)$
- $I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$
Chain rule
- $I(X; Y_1, Y_2,..., Y_n) = I(X; Y_1) + I(X; Y_2 | Y_1) +... + I(X; Y_n | Y_1,..., Y_{n-1})$
Relationship to KL Divergence
- $I(X;Y) = D(p(x,y) || p(x)p(y))$
- Mutual information is the KL divergence between joint distribution and product of marginal distributions
Lab 2: Measurements
Objectives
- Familiarization w/ lab measuring devices.
- Estimating measurement uncertainty and propagating it
Measuring
- Accurate measurement skills are useful in science.
- Every measurement has an uncertainty.
Equipment
- Ruler, DMM, stopwatch, triple beam balance, cylindrical metal object
- Vernier caliper or micrometer
Procedures
Measuring Length via equipment
- Ruler to measure length, width, thickness of object
- Caliper to measure length, width, thickness of object
- Record w/ estimation.
Measuring Mass via equipment
- Triple Beam Balance to measure object.
- Record w/ estimation.
Measuring Time via equipment
- Stopwatch
- Record values. Calculate the average and SD to est. the uncertainty.
Measuring Resistance via equipment
- DMM to measure resistor resistance.
Equations for measurement
Volume Calc
- Volume = Length * Width * Thickness, $V = l * w * t$
Uncertainty Volume
- $\sigma_V = V * \sqrt{(\frac{\sigma_l}{l})^2 + (\frac{\sigma_w}{w})^2 + (\frac{\sigma_t}{t})^2}$
Mass Calc
- Use above measurements calculate with Density = Mass/Volume, $ρ = \frac{m}{V}$
Uncertainty Mass
- $\sigma_ρ = ρ * \sqrt{(\frac{\sigma_m}{m})^2 + (\frac{\sigma_V}{V})^2}$
Sample Questions
List of Questions
- Which measuring device (ruler or caliper) gave you a more precise measurement of the dimensions of the metal object? Explain your answer
- How does the uncertainty in your measurements affect the uncertainty in your calculated values?
- What are some possible sources of error in this experiment?
- How could you reduce the uncertainty in your measurements?
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.