Supply Chain Management (SCM)

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

The tropical rainforests cover about seven per cent of the Earth's land but are home to more than ______ of the total planet, animal and insect species.

half

In tropical grasslands or savannas, plants experience high temperatures all year round with distinct wet and ______ seasons.

dry

Most coniferous trees are ______, which means that they do not shed their leaves.

evergreen

The trees are resinous, thick and sticky-like substance to protect the trees from the bitter ______ in winter.

<p>cold</p> Signup and view all the answers

The branches are strong but supple so that they do not ______ under the weight of the snow.

<p>break</p> Signup and view all the answers

Polar regions experience extremely cold temperatures, which do not support ______ growth.

<p>plant</p> Signup and view all the answers

The ______ are small needle-like and waxy to prevent loss of moisture through transpiration during winter.

<p>leaves</p> Signup and view all the answers

The continuous forests do not have a layered structure like that in the tropical rainforests; only one variety of trees in an area. This number of species rarely exceeds three per square ______.

<p>kilometre</p> Signup and view all the answers

Trees shed their ______ to prevent loss of water through transpiration during autumn.

<p>leaves</p> Signup and view all the answers

The fallen leaves decompose to become ______ for the trees and plants.

<p>nutrients</p> Signup and view all the answers

Flashcards

Temperature

The temperature at which photosynthesis takes place. Ranging from near zero to about 50°C.

Sunlight

Essential for photosynthesis in plants. Natural vegetation responds to the amount of sunlight available.

Earth's main ecosystems

Forest biomes, grassland biomes, and desert biomes. Regions where trees predominate will be a forest biome.

Trees and other plants adaptations

Trees shed their leaves to prevent loss of water through transpiration during autumn.

Signup and view all the flashcards

Root System adaptation

The roots are deep to tap underground water during the winter season when surface water is mostly frozen.

Signup and view all the flashcards

Coniferous forests

Trees are evergreen, which means that they do not shed their leaves.

Signup and view all the flashcards

Leaves Adaptation

Their leaves are small, needle-like and waxy to prevent loss of moisture through transpiration during winter.

Signup and view all the flashcards

Soil Characteristics in polar regions

The soils is thin and not fertile, as decomposition is slow due to the low temperatures.

Signup and view all the flashcards

Temperate deciduous forests

Trees shed their leaves as the temperatures fall.

Signup and view all the flashcards

Tropical monsoon forests

Trees are exposed to distinct wet and dry seasons.

Signup and view all the flashcards

Study Notes

  • Supply Chain (SC): A comprehensive system that includes organizations, people, activities, information, and resources involved in taking products from suppliers to customers.
  • Supply Chain Management (SCM): Overseeing the flow of goods and services to maximize efficiency and customer satisfaction.

Importance of SCM

  • Improves operational efficiency
  • Reduces costs
  • Enhances customer satisfaction
  • Provides a competitive advantage

Key SCM Components

  • Planning: Includes demand forecasting and capacity planning
  • Sourcing: Involves selecting suppliers and contract negotiation
  • Making: Encompasses production scheduling and quality control
  • Delivering: Deals with logistics and distribution
  • Returning: Manages returns and customer support

Main Flows of a Supply Chain

  • Material Flow: The movement of raw materials, components, and finished goods
  • Information Flow: The exchange of order information, demand forecasts, and inventory levels
  • Financial Flow: Credit terms, payment schedules, and ownership arrangements

SCM Strategies

Inventory Management

  • Just-in-Time (JIT): Aims to minimize inventory levels, reduce waste, and increase efficiency
  • Vendor-Managed Inventory (VMI): The supplier manages inventory levels at the customer's location to improve turnover and reduce stockouts

Lean Manufacturing

  • Focused on eliminating waste, improving efficiency, and prioritizing customer value

Agile Supply Chain

  • Designed to quickly respond to demand changes with flexibility and adaptability

Bullwhip Effect

  • Small demand fluctuations at retail level causing progressively larger fluctuations up the supply chain

Causes

  • Lack of Information Sharing
  • Order Batching
  • Price Fluctuations
  • Rationing and Shortage Gaming

Solutions

  • Information Sharing
  • Channel Alignment
  • Operational Efficiency

SCM Technologies

Enterprise Resource Planning (ERP)

  • Integrates all business aspects for improved data visibility and process automation

Customer Relationship Management (CRM)

  • Manages customer interactions, improves satisfaction, and increases sales

SCM Software

  • Manages the supply chain to improve efficiency and reduce costs

SCM Challenges

  • Complexity
  • Uncertainty
  • Sustainability

Future of SCM

  • Digitalization for greater visibility and responsiveness
  • Automation to streamline operations
  • Sustainability to minimize environmental impact

Chemical Reaction Engineering

  • Chapter 18 focuses on the resistance to mass transfer in chemical reactions

Film Theory

Foundation and Core Idea

  • Based on Whitman's work (1923)
  • Suggests a stagnant film present at the interface through which mass must be transferred

Film Theory Assumptions

  • Mass transfer happens through molecular diffusion in a stagnant film
  • Absence of convection within the film
  • Linear concentration gradient inside the film
  • Equilibrium maintenance at the interface

Mass Transfer Rate

  • $N_A = k_g(p_A - p_{Ai}) = k_l(c_{Ai} - c_A)$
  • $N_A$ = molar flux of component A
  • $k_g$, $k_l$ = gas and liquid phase mass transfer coefficients
  • $p_A$, $c_A$ = bulk phase concentrations
  • $p_{Ai}$, $c_{Ai}$ = interfacial concentrations

Overall Mass Transfer Coefficient

  • $N_A = K_g(p_A - p_A^) = K_l(c_A^ - c_A)$
  • $K_g$, $K_l$ = overall gas and liquid mass transfer coefficients
  • $p_A^$, $c_A^$ = hypothetical concentrations in equilibrium with $c_A$ and $p_A$

Coefficient Relationship

  • $\frac{1}{K_g} = \frac{1}{k_g} + \frac{H}{k_l}$
  • $\frac{1}{K_l} = \frac{1}{Hk_g} + \frac{1}{k_l}$
  • $H$ = Henry's Law constant

Penetration Theory

Origin and Primary Concept

  • Introduced by Higbie (1935)
  • Involves unsteady-state diffusion into a liquid element

Penetration Theory Assumptions

  • Diffusion under unsteady-state conditions in a liquid element at the interface
  • Consistent exposure time for each liquid element at the surface
  • Preservation of equilibrium at interface
  • Surface element replaced by fresh liquid from bulk

Mass Transfer Rate

  • $N_A = \sqrt{\frac{D_A}{\pi t_e}}(c_{Ai} - c_A)$
  • $t_e$ = exposure time

Surface Renewal Theory

Background and Basic Principle

  • Proposed by Danckwerts (1951)
  • Centers around unsteady-state diffusion into a liquid element at the interface

Theory Assumptions

  • Unsteady-state diffusion into a liquid element for brief exposure at an interface
  • $\phi(t) = se^{-st}$ age distribution function for residence times
  • Maintenance of equilibrium at the interface

Mass Transfer Rate

  • $N_A = \sqrt{D_A s}(c_{Ai} - c_A)$
  • $s$ = fractional rate of surface renewal

October 29, 2012 - Lecture 21 Review

  • Differentiability definition for $f: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ at a uses a linear transformation T

Differentiability Criteria

  • $\lim_{\mathbf{h} \rightarrow \mathbf{0}} \frac{\mathbf{f(a + h)} - \mathbf{f(a)} - T(\mathbf{h})}{||\mathbf{h}||} = \mathbf{0}$
  • Jacobian Matrix: $\mathbf{f'(a)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial f_1}{\partial x_n}(\mathbf{a})\ \vdots & \ddots & \vdots\ \frac{\partial f_m}{\partial x_1}(\mathbf{a}) & \cdots & \frac{\partial f_m}{\partial x_n}(\mathbf{a}) \end{bmatrix}$

Chain Rule

  • If $\mathbf{f}: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$ is differentiable at $\mathbf{a}$, and $\mathbf{g}: B \subseteq \mathbb{R}^m \rightarrow \mathbb{R}^k$ is differentiable at $\mathbf{f(a)}$, and $\mathbf{f(A)} \subseteq B$, then $\mathbf{g \circ f}: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^k$ differentiable at $\mathbf{a}$
  • $(\mathbf{g \circ f})'(\mathbf{a}) = \mathbf{g'(f(a))} \mathbf{f'(a)}$

Alternate Notation

  • If $\mathbf{y} = \mathbf{f(x)}$ and $\mathbf{z} = \mathbf{g(y)}$, then $\frac{d\mathbf{z}}{d\mathbf{x}} = \frac{d\mathbf{z}}{d\mathbf{y}} \frac{d\mathbf{y}}{d\mathbf{x}}$

Example Task

  • Finding partial derivatives with variable substitutions e.g., converting $z=f(x, y)$ to polar by using $x = r\cos\theta$, $y = r\sin\theta$

Solution Examples

  • $\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \cos\theta + \frac{\partial z}{\partial y} \sin\theta$
  • $\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} (-r\sin\theta) + \frac{\partial z}{\partial y} (r\cos\theta)$

Higher Order Derivatives

  • For $f: A \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$, if $\frac{\partial f}{\partial x_i}$ is differentiable

Notation

  • The notation for second-order partial derivative: $\frac{\partial}{\partial x_j} \left( \frac{\partial f}{\partial x_i} \right) = \frac{\partial^2 f}{\partial x_j \partial x_i}$

Clairaut's Theorem

  • If $\frac{\partial^2 f}{\partial x_j \partial x_i}$ and $\frac{\partial^2 f}{\partial x_i \partial x_j}$ are continuous, $\frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{a}) = \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a})$

Example

  • Deriving mixed partial derivatives, showing derivatives are equal

Derived Equations

  • $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = 2x + e^{xy} + xy e^{xy} - 2x\sin(x^2 + y)$
  • $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) = 2x + e^{xy} + xe^{xy} - 2x\sin(x^2 + y)$

Taylor's Theorem

  • Describes function approximation using derivatives at a single point

Univariable case

  • $f(x) = f(a) + f'(a)(x - a) + \varphi_a (x) (x - a)$ with $\lim_{x \rightarrow a} \varphi_a(x) = 0$

Further function approximation

  • $f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \psi_a(x) (x - a)^2$ with $\lim_{x \rightarrow a} \psi_a(x) = 0$

Multivariable Version

  • Expands around a point with partial derivatives and a remainder term

Multivariable Theorem

${f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{a})(x_i - a_i) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{a})(x_i - a_i)(x_j - a_j) + \Psi_{\mathbf{a}}(\mathbf{x}) ||\mathbf{x - a}||^2}$

$\lim_{\mathbf{x} \rightarrow \mathbf{a}} \Psi_{\mathbf{a}}(\mathbf{x}) = 0$

Quadratic Form

  • Expression involving second-order terms.

Quadratic Form Equation

  • $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ where $A$ is a symmetric matrix

Rewritten Taylor’s Theorem

  • Taylor’s theorem can be rewritten as $f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{a})(x_i - a_i) + \frac{1}{2} (\mathbf{x - a})^T H_{\mathbf{a}} (\mathbf{x - a}) + \Psi_{\mathbf{a}}(\mathbf{x}) ||\mathbf{x - a}||^2$

Física - Tarea 1

Problemas a Resolver

  1. Peso en la Luna:

    • Gravedad en la Luna ($g_L$) = $1.62 \ m/s^2$
    • Peso en la Tierra ($P_T$) = 900 N
    • Determinar el peso en la Luna ($P_L$)

    Ecuación: $P_L = m \cdot g_L$, donde $m = \frac{P_T}{g_T}$ y $g_T = 9.8 \ m/s^2$ (gravedad en la Tierra)

  2. Análisis Dimensional:

    • Demostrar dimensionalmente que $x = v_0t + \frac{1}{2}at^2$ es correcta.

    Análisis:

    • $[x] = L$ (Longitud)
    • $[v_0t] = LT^{-1} \cdot T = L$
    • $[\frac{1}{2}at^2] = LT^{-2} \cdot T^2 = L$

    Conclusión: La suma de términos con dimensión de longitud resulta en una longitud; por lo tanto, es dimensionalmente correcta.

  3. Movimiento en Dos Dimensiones:

    • Parte 1: Velocidad hacia el este ($v_E$) = $50 \ km/h$ durante 1 hora.
    • Parte 2: Velocidad hacia el norte ($v_N$) = $80 \ km/h$ durante 30 minutos (0.5 horas).

    a) Distancias recorridas:

    • Distancia al este ($d_E$) = $v_E \cdot t_E = 50 \ km$
    • Distancia al norte ($d_N$) = $v_N \cdot t_N = 40 \ km$

    b) Velocidad media en todo el recorrido:

    • Desplazamiento total ($\vec{d}$) = $\sqrt{d_E^2 + d_N^2} = \sqrt{50^2 + 40^2} \ km$
    • Tiempo total ($t_{total}$) = 1 hora + 0.5 horas = 1.5 horas
    • Velocidad media ($\vec{v}{avg}$) = $\frac{\vec{d}}{t{total}}$

    c) Rapidez media en todo el recorrido:

    • Distancia total ($d_{total}$) = $d_E + d_N = 50 + 40 \ km$
    • Rapidez media ($v_{avg}$) = $\frac{d_{total}}{t_{total}}$
  4. Vectores en Componentes:

    • $\vec{A}$ componentes: $A_x = -8.7 \ cm$, $A_y = 15 \ cm$
    • $\vec{B}$ componentes: $B_x = 13.2 \ cm$, $B_y = -6.6 \ cm$
    • $\vec{A} - \vec{B} + 3\vec{C} = 0$, encontrar las componentes de $\vec{C}$ $\vec{C} = \frac{\vec{B} - \vec{A}}{3}$
  5. Movimiento Acelerado en Dos Dimensiones:

    • Velocidad inicial ($\vec{v}_0$) = $2.0 \times 10^6 \ m/s$ en la dirección x
    • Aceleración constante ($\vec{a}$) = $3.0 \times 10^{12} \ m/s^2$ en la dirección y
    • Coordenada x del electrón = 4.0 cm

    Fórmulas:

    • $x = v_{0x} \cdot t$, encontrar $t$ usando $x = 0.04 \ m$
    • $y = v_{0y} \cdot t + \frac{1}{2} a_y t^2$, calcular $y$ usando el valor de $t$ obtenido.

Heat Transfer

  • Heat transfer is the thermal energy in transit due to a temperature difference.

Heat Transfer Modes

Conduction

  • Energy transfer between particles due to interactions
  • Fourier's Law, $\dot{q}_x'' = -k\frac{dT}{dx}$
    • $\dot{q}_x''$ is heat flux in $\left[\frac{W}{m^2}\right]$
    • $k$ is thermal conductivity in $\left[\frac{W}{mK}\right]$
    • $\frac{dT}{dx}$ is temperature gradient in $\left[\frac{K}{m}\right]$

Convection

  • Energy transfer between surface and moving fluid at different temperatures
  • Newton's Law of Cooling, $\dot{q}'' = h(T_s - T_{\infty})$
    • $\dot{q}''$ is heat flux in $\left[\frac{W}{m^2}\right]$
    • $h$ is convection heat transfer coefficient in $\left[\frac{W}{m^2K}\right]$
    • $T_s$ is surface temperature in $[K]$
    • $T_{\infty}$ is fluid temperature in $[K]$

Radiation

  • Energy emitted due matter due to change in electron configurations
  • Stefan-Boltzmann Law, $\dot{q}'' = \epsilon \sigma T_s^4$
    • $\dot{q}''$ is heat flux in $\left[\frac{W}{m^2}\right]$
    • $\epsilon$ is emissivity of the surface
    • $\sigma$ is Stefan-Boltzmann constant, $\sigma = 5.67 \times 10^{-8} \frac{W}{m^2K^4}$
    • $T_s$ is surface temperature in $[K]$

Other Terms

Thermal Resistance

  • Calculated with formula $R = \frac{\Delta T}{\dot{Q}}$
  • $R$ is the thermal resistance in $\left[\frac{K}{W}\right]$
  • $\Delta T$ is the temperature difference in $[K]$
  • $\dot{Q}$ is the heat transfer rate in $[W]$

Contact Resistance

  • It exists when two materials are in contact due to imperfect surface contact
  • It can be minimized by using using thermal grease

Overall Heat Transfer Coefficient

  • Calculated with formula $U = (\frac{1}{h_i} + \sum \frac{L}{k} + \frac{1}{h_o})^{-1}$ $U$: overall heat transfer coefficient $\left[\frac{W}{m^2K}\right]$
  • $h_i$: inner heat transfer coefficient $\left[\frac{W}{m^2K}\right]$
  • $L$: thickness of the material $[m]$
  • $k$: thermal conductivity $\left[\frac{W}{mK}\right]$
  • $h_o$: outer heat transfer coefficient $\left[\frac{W}{m^2K}\right]$

What is Economics?

  • The study of how societies use scarce resources to make valuable goods and services
  • How they distribute them among different individuals

Key Ideas

  • Resources or goods are limited or scarce
  • Society must make efficient use of limited resources

Branches of Economics

  • Microeconomics: Focuses on behavior of aspects of an economy, such as markets, firms, and households.
  • Macroeconomics: Concentrates on overall performance of the economy.

Central Questions of Economics

  • What goods and services are produced, and in what quantities?
  • How are these goods produced?
  • For whom are the goods produced; how are they distributed?

Economic Types

  • Market Economy: Resources allocated via markets where individuals and firms voluntarily agree to exchange goods and usually through monetary payment.
  • Authoritarian Economy: The government makes most economic decisions.
  • Mixed Economies: Combines market and authoritarian economics

Technological Possibilities of Society

  • Every economy is limited by resources like labor, technical knowledge, and capital.

Inputs and Products

  • Inputs: Services that are used to create goods and services
  • Products: Resulting goods or services from the production process, consumed or used for further production

Production Possibility Frontier (PPF)

  • Represents maximum quantities an economy can produce, given its technological knowledge and quantity of inputs

Example

  • A point system represents examples of what resources can be dedicated to and what they can output (listed in document)

Key Terms

  • Opportunity Cost: The value of the next best alternative when making a decision.
  • Efficiency: When the most output is being created with the least amount of resources

Efficiency

  • Productive Efficiency:* Achieved when economy cannot produce more of one good without reducing production of another; economy located on its PPF.

Unidad 1: Vectores

  • Introducción a las magnitudes físicas y operaciones vectoriales.

1.1 Magnitudes Escalares y Vectoriales

  • Distinción entre magnitudes que se describen con un valor y aquellas que requieren dirección y sentido.

Magnitud Escalar

  • Definición: Queda completamente determinada con un número y sus unidades. Ejemplos: Masa, temperatura, energía, tiempo, volumen, densidad.

Magnitud Vectorial

  • Definición: Requiere módulo, dirección y sentido. Ejemplos: Velocidad, aceleración, fuerza, peso, desplazamiento, impulso.

1.2 Representación de Vectores

  • Formas de representar vectores geométrica y analíticamente.

Geométrica

  • Un vector es una flecha con: Módulo, dirección, sentido y punto de aplicación. Descripción: $\vec{A}$ = Vector A. $|\vec{A}| = A =$ Módulo del vector A

Analítica

  • Se representa con sus componentes en un sistema de coordenadas. Tipos:
  • Cartesianas: $\vec{A} = (A_x, A_y, A_z)$.
  • Polares:* $\vec{A} = (A, θ)$.

Relación entre coordenadas cartesianas y polares

$A_x = A \cdot cos θ$, $A_y = A \cdot sen θ$, $A = \sqrt{A_x^2 + A_y^2}$, $θ = arctan (\frac{A_y}{A_x})$.

Vectores unitarios cartesianos

Vectores de módulo 1 en la dirección de los ejes coordenados ($\hat{i}, \hat{j}, \hat{k}$).

Expresión de un Vector

  • Mediante vectores unitarios cartesianos: $\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$.

1.3 Operaciones con Vectores

  • Suma, resta, producto escalar y vectorial.

Suma de vectores

  • Gráfica: Métodos del paralelogramo y poligonal.
  • Analítica:* Sumar las componentes correspondientes.
  • $\vec{A} + \vec{B} = (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j}$.

Resta de Vectores

  • Restar las componentes correspondientes: $\vec{A} - \vec{B} = (A_x - B_x) \hat{i} + (A_y - B_y) \hat{j}$.

Producto de un Escalar por un Vector

  • El producto de un escalar por un vector da otro vector con la misma dirección pero diferente módulo.
  • $k \vec{A} = k A_x \hat{i} + k A_y \hat{j}$

Producto Escalar (Producto Punto)

  • Definición: Da como resultado un escalar. Fórmulas: $\vec{A} \cdot \vec{B} = A B cos θ = A_x B_x + A_y B_y$.

Propiedades del Producto Escalar

Conmutativa y distributiva; vectores perpendiculares si el producto es cero; vectores unitarios ($\hat{i} \cdot \hat{i} = 1$, $\hat{i} \cdot \hat{j} = 0$).

Producto Vectorial (Producto Cruz)

  • Definición: Resulta en un vector perpendicular a ambos vectores originales. Fórmulas:
  • $\vec{A} \times \vec{B} = A B sen θ \hat{n}$. $\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j} + (A_x B_y - A_y B_x) \hat{k}$.

Propiedades del Producto Vectorial

  • No conmutativo, distributivo; vectores paralelos si el producto es cero; vectores unitarios ($\hat{i} \times \hat{i} = 0$, $\hat{i} \times \hat{j} = \hat{k}$).

Fonction Exponentielle : Study notes

I. Définition

  • The exponential function (exp) is the only differentiable function on $\mathbb{R}$.
  • It is defined with $\exp' = \exp$ and $\exp(0) = 1$.
  • For real number x, $\exp(x) = e^x$ with $e = \exp(1) \approx 2.718$.

II. Propriétés

1. Propriétés Algébriques

  • For real numbers $x$ and $y$:
  • $e^{x+y} = e^x \times e^y$
  • $e^{x-y} = \frac{e^x}{e^y}$
  • $e^{-x} = \frac{1}{e^x}$
  • $(e^x)^y = e^{xy}$

2. Propriétés Analytiques

  • The exponential function is positive on $\mathbb{R}$. For all real numbers $x, e^x > 0$
  • It is strictly increasing on $\mathbb{R}$.
  • $\lim_{x \to -\infty} e^x = 0$
  • $\lim_{x \to +\infty} e^x = +\infty$

3. Dérivée

  • The exponential function is differentiable on $\mathbb{R}$, and its derivative is itself: $(e^x)' = e^x$
  • More generally, if $u$ is a differentiable function on an interval $I \Rightarrow (e^u)' = u'e^u$

4. Représentation Graphique

  • The graph of the exponential function is above the x-axis and increasing.
  • It passes through the point $(0; 1)$.

5. Équations et Inéquations

  • For real numbers $x$ and $y$:
  • $e^x = e^y \Leftrightarrow x = y$
  • $e^x < e^y \Leftrightarrow x < y$
  • $e^x > e^y \Leftrightarrow x > y$

III. Exercices Types

1. Résolution d'équations

  • Example: Solve equation $e^{x^2 - x} = 1$.
  • $0$ and $1$ are the solutions.

2. Dérivation de fonctions

  • Example: Let $f(x) = e^{x^2 + 1}$
  • Calculate $f'(x)$
  • Sol: $f'(x) = (x^2 + 1)' e^{x^2 + 1} = 2x e^{x^2 + 1}$

3. Limites de fonctions

  • Example: Limit calculation $\lim_{x \to +\infty} e^{-x}$.
  • Sol: $\lim_{x \to +\infty} e^{-x} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$ since $\lim_{x \to +\infty} e^x = +\infty$.

Lecture 19: Mutual Information

Motivation

  • Measuring how much one random variable tells about another
  • Measuring uncertainty reduction about one random variable (Y) given another (X)

Quantified by

  • Mutual Information

Definition 1

  • $I(X; Y) = H(Y) - H(Y|X)$
    • $H(Y)$ is the entropy of Y
    • $H(Y|X)$ conditional entropy of Y given X

Definition 2

  • $I(X;Y) = H(X) - H(X|Y)$
    • $H(X)$ is the entropy of X
    • $H(X|Y)$ is the conditional entropy of X given Y

Definition 3

  • $I(X; Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) log\frac{p(x,y)}{p(x)p(y)}$
    • $\mathcal{X}$ support of X, $\mathcal{Y}$ support of Y
    • $p(x,y)$ joint pmf of X and Y
    • $p(x)$ marginal pmf of X, $p(y)$ marginal pmf of Y

Example 1 Binary symmetric channel (BSC) with crossover probability ϵ

  • $X \in {0,1}$ Input
  • $Y \in {0,1}$ Output
  • $p(Y=1|X=0) = \epsilon \text{ Noise}$

Example Question

  • Assume $X \sim \text{Bernoulli}(\frac{1}{2})$, i.e., $p(X=0) = p(X=1) = \frac{1}{2}$. What is $I(X;Y)$?

Answer

  • The answer is $I(X;Y) = 1 - H(\epsilon)$

Properties of Mutual Information

  • $I(X;Y) = I(Y;X)$ (Symmetry)
  • $I(X;Y) \geq 0$
  • $I(X;Y) = H(X) + H(Y) - H(X,Y)$
  • $I(X;X) = H(X)$
  • $I(X;Y|Z) = H(X|Z) - H(X|Y,Z)$

Chain rule

  • $I(X; Y_1, Y_2,..., Y_n) = I(X; Y_1) + I(X; Y_2 | Y_1) +... + I(X; Y_n | Y_1,..., Y_{n-1})$

Relationship to KL Divergence

  • $I(X;Y) = D(p(x,y) || p(x)p(y))$
  • Mutual information is the KL divergence between joint distribution and product of marginal distributions

Lab 2: Measurements

Objectives

  • Familiarization w/ lab measuring devices.
  • Estimating measurement uncertainty and propagating it

Measuring

  • Accurate measurement skills are useful in science.
  • Every measurement has an uncertainty.

Equipment

  • Ruler, DMM, stopwatch, triple beam balance, cylindrical metal object
  • Vernier caliper or micrometer

Procedures

Measuring Length via equipment

  • Ruler to measure length, width, thickness of object
  • Caliper to measure length, width, thickness of object
    • Record w/ estimation.

Measuring Mass via equipment

  • Triple Beam Balance to measure object.
  • Record w/ estimation.

Measuring Time via equipment

  • Stopwatch
    • Record values. Calculate the average and SD to est. the uncertainty.

Measuring Resistance via equipment

  • DMM to measure resistor resistance.

Equations for measurement

Volume Calc

  • Volume = Length * Width * Thickness, $V = l * w * t$

Uncertainty Volume

  • $\sigma_V = V * \sqrt{(\frac{\sigma_l}{l})^2 + (\frac{\sigma_w}{w})^2 + (\frac{\sigma_t}{t})^2}$

Mass Calc

  • Use above measurements calculate with Density = Mass/Volume, $ρ = \frac{m}{V}$

Uncertainty Mass

  • $\sigma_ρ = ρ * \sqrt{(\frac{\sigma_m}{m})^2 + (\frac{\sigma_V}{V})^2}$

Sample Questions

List of Questions

  • Which measuring device (ruler or caliper) gave you a more precise measurement of the dimensions of the metal object? Explain your answer
  • How does the uncertainty in your measurements affect the uncertainty in your calculated values?
  • What are some possible sources of error in this experiment?
  • How could you reduce the uncertainty in your measurements?

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

More Like This

Logistics and Supply Chain Management
8 questions
Logistics and Supply Chain Management Overview
10 questions
Logistics and Supply Chain Management
8 questions
Use Quizgecko on...
Browser
Browser