Stock Addition in Discrete Fourier Transform (DFT)
11 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the key feature of the Discrete Fourier Transform (DFT)?

  • Breaking down a time domain sequence into frequency components (correct)
  • Analyzing signals with complex coefficients
  • Extending analysis using infinite summation of sines and cosines
  • Representing signals with more than one period
  • What role does stock addition play in signal analysis?

  • Applying complex coefficients to signals
  • Extending analysis beyond single periods (correct)
  • Using only sines for representation
  • Limiting analysis to one period
  • In the Fourier series representation, what does Bk represent?

  • The amplitude of the nth component
  • Phase shift between coefficients
  • Magnitude of each coefficient (correct)
  • Periodic function repetition
  • What is the significance of the parameter T in the square wave function y(t)?

    <p>Defining the interval over which y(t) is defined</p> Signup and view all the answers

    What does x(t) repeating itself every M periods imply?

    <p>It is a periodic function</p> Signup and view all the answers

    Why is stock addition necessary in analyzing signals with more than one period?

    <p>To extend analysis beyond single periods using Fourier series representation</p> Signup and view all the answers

    What does it mean when the spectrum of x(mt) repeats M times per cycle of X(e^{j ext{ω}T})?

    <p>The function x(mt) is periodic with M periods.</p> Signup and view all the answers

    How can we express the DFT of x(t) if we wish to analyze a 6-periodic function instead of the original 4-periodic one?

    <p>dft(6*input)</p> Signup and view all the answers

    What modification should be made to the MATLAB code to handle multiple periods within each call to the dft() function?

    <p>Multiply the input with the desired number of periods.</p> Signup and view all the answers

    What is the consequence of performing an eight-period DFT instead of a four-period one?

    <p>Higher frequency resolution but longer processing time.</p> Signup and view all the answers

    Why is stock addition important in expanding the range of applications for the DFT?

    <p>It allows analysis of multi-periodic functions without code adjustment.</p> Signup and view all the answers

    Study Notes

    Stock Addition to the Discrete Fourier Transform (DFT)

    The Discrete Fourier Transform (DFT) is a fundamental tool used in signal analysis and processing. One of its key features is its ability to break down a time domain sequence into frequency components using complex coefficients. However, what if you want to analyze signals with more than one period? This is where stock addition comes in.

    Stock addition allows us to extend our analysis beyond single periods by representing periodic functions using their corresponding Fourier series representation. These representations consist of an infinite summation of sines and cosines. To understand how this works, let's consider a simple example of the square wave function y(t), defined over two periods on the interval ( -T \le t \le T):

    [y(t) = \begin{cases} A_n & -\frac{T}{2} \leq t < 0 \ -A_n & 0 \leq t < \frac{T}{2} \end{cases}]

    where (A_n) is the amplitude of the nth component. We can represent this function using the following expression:

    [y(t) = \sum_{k=-\infty}^{\infty} B_k \cos\left(\frac{2\pi k}{T}t + \phi_k \right)]

    Here, (B_k) represents the magnitude of each coefficient, while (\phi_k) indicates the phase shift between them.

    Now, let's say we have another periodic function (x(t)) which has the property that it repeats itself every (M) periods. In order to analyze this function using the DFT, we need to first express it as follows:

    [X(e^{jwT}) = X(e^{jwMT})]

    This means that the spectrum of (x(mt)) will repeat M times per cycle of (X(e^{j\omega T})). By multiplying these spectra together, we obtain the final expression for the DFT of (x(t)):

    [X(e^{j\omega T}) = F(e^{j(\omega / M)T}), \quad m = 0, 1,\ldots, M]

    To implement this concept in practice, we simply modify our code to handle multiple periods within each call to the dft() function in MATLAB. For instance, if you wish to perform an eight-period DFT instead of a four-period one, you would call dft(8*input).

    In summary, stock addition expands the range of applications for the DFT by allowing us to analyze multi-periodic functions without having to adjust our existing code structure.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Learn how to extend the analysis of multi-periodic signals beyond single periods using stock addition in the Discrete Fourier Transform (DFT). Explore how periodic functions are represented using Fourier series and understand the concept of spectrum repetition for functions with multiple periods. Discover the practical implementation of stock addition in MATLAB for analyzing multi-periodic functions.

    More Like This

    Use Quizgecko on...
    Browser
    Browser