Podcast
Questions and Answers
What is a key focus of person-centered care?
What is a key focus of person-centered care?
- Meeting consumer needs flexibly (correct)
- Prioritizing the needs of healthcare providers
- Enforcing strict routines for all patients
- Maintaining traditional healthcare practices
What does person-centered care enable people to do?
What does person-centered care enable people to do?
- Avoid making any decisions about their health
- Rely solely on the advice of healthcare professionals
- Become active participants in their care (correct)
- Follow pre-determined care plans without question
What is the foundation of relationships in person-centered care?
What is the foundation of relationships in person-centered care?
- Strict adherence to medical protocols.
- Mutual trust and understanding (correct)
- Hierarchical power dynamics
- Financial incentives
What can advancements in technology lead to in healthcare?
What can advancements in technology lead to in healthcare?
What is the definition of resilience?
What is the definition of resilience?
In the context of healthcare, what does compassion involve?
In the context of healthcare, what does compassion involve?
What is the first step of the RN pathway?
What is the first step of the RN pathway?
What is the role of the Nursing and Midwifery Board of Australia?
What is the role of the Nursing and Midwifery Board of Australia?
What is a major challenge that Australia faces in sustaining a health workforce?
What is a major challenge that Australia faces in sustaining a health workforce?
What do effective workplace cultures promote?
What do effective workplace cultures promote?
Flashcards
Scope of practice
Scope of practice
The full spectrum of roles, functions, responsibilities, activities and decision-making capacities of a profession.
Lifelong learning
Lifelong learning
Ensuring nurses continue to increase their knowledge, skills and competence throughout their career.
Person-centered care
Person-centered care
A management approach focused on patients' needs, preferences, and values, ensuring they guide healthcare decisions.
Professional practice framework
Professional practice framework
Signup and view all the flashcards
Challenges facing the Australian health system
Challenges facing the Australian health system
Signup and view all the flashcards
Resilience
Resilience
Signup and view all the flashcards
Being compassionate
Being compassionate
Signup and view all the flashcards
Art and Science of nursing
Art and Science of nursing
Signup and view all the flashcards
Study Notes
Static vs Dynamic Typing
- Static Typing involves types known and checked at compile time, requiring explicit declaration of types.
- Static typing allows for early error detection.
- The compiler can optimize static typed code based on type information.
- Dynamic Typing features types checked at runtime, without explicit type declaration.
- Dynamic typing allows flexible and concise code.
- Errors in dynamic typing can occur during runtime.
Memory Management
- Under Static Typing memory allocation is determined at compile time.
- With static typing memory usage is fixed.
- Memory access is efficient in static typing.
- Poor memory management results in leaks or overflow in static typing.
- Memory allocation and deallocation occur during runtime in Dynamic Typing.
- Dynamic typing supports flexible memory usage with automatic garbage collection.
- Dynamic Typing may sometimes be less efficient due to runtime overhead.
Performance
- Static Typing code is generally faster during execution due to compile-time optimizations.
- There is less runtime overhead when doing static typing.
- Static typing is suitable for performance-critical applications.
- Dynamic Typing might be slower due to runtime type checking.
- Dynamic typing has more runtime overhead than static typing.
- Dynamic typing is more suitable for rapid prototyping and scripting.
Examples
- Code in C++, and Java are examples of Static Typing as shown below
int add(int a, int b) {
return a + b;
}
int add(int a, int b) {
return a + b;
}
- Code in Python, and JavaScript are examples of Dynamic Typing as shown below
def add(a, b):
return a + b
function add(a, b) {
return a + b;
}
Topic Subtitle
- Reaction rates for $aA + bB \rightarrow cC + dD$ can be expressed as disappearance of reactants: $-\frac{1}{a} \frac{d[A]}{dt} , -\frac{1}{b} \frac{d[B]}{dt}$
- Reaction rates for $aA + bB \rightarrow cC + dD$ can be expressed as appearance of products: $\frac{1}{c} \frac{d[C]}{dt} , \frac{1}{d} \frac{d[D]}{dt}$
- The overall reaction rate is expressed as $rate = -\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}$
- Reaction Rate is affected by concentration of reactants, temperature, surface area, catalysts, and pressure.
- Rate law relates reaction rate to the concentration of reactants, expressed as $rate = k[A]^m[B]^n$
- In the rate law expression: $k$ is the rate constant, $[A]$ and $[B]$ are the concentrations of reactants & $m$ and $n$ are the reaction orders with respect to A and B.
- The overall reaction order is the sum of individual orders: $m + n$
- Rate laws can be determined using experimental data like initial rates or the isolation method.
- The Method of Initial Rates measures the initial rate at varied initial concentrations.
- The Isolation Method keeps all reactants except one in excess to determine the order with respect to the changing reactant.
- Zero-Order Reactions have a rate independent of concentration, with a Rate Law: $rate = k$
- The Integrated Rate Law for zero-order reactions is: $[A]_t = -kt + [A]_0$
- Half-life for zero-order reactions is $t_{1/2} = \frac{[A]_0}{2k}$
- First-Order Reactions have a their rate directly proportional to concentration, and follows Rate Law: $rate = k[A]$
- A first-order reaction has an Integrated Rate Law of: $ln[A]_t = -kt + ln[A]_0$
- Half-life for a first-order reaction is $t_{1/2} = \frac{0.693}{k}$
- Second-Order Reactions have a rate proportional to the square of the concentration and follow Rate Law of: $rate = k[A]^2$
- The Integrated Rate Law for second-order reactions is: $\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$
- Half-life for a second-order reaction is: $t_{1/2} = \frac{1}{k[A]_0}$
- Elementary steps includes simple steps that represent the progress of a reaction at the molecular level.
- The Rate-Determining Step is the slowest step in a reaction mechanism that determines the overall rate of the reaction.
- Molecularity is the number of molecules colliding in an elementary step where unimolecular corresponds to one molecule
- Molecularity is the number of molecules colliding in an elementary step where bimolecular corresponds to two molecules
- Molecularity is the number of molecules colliding in an elementary step where termolecular corresponds to three molecules
- The Arrhenius Equation describes the temperature dependence of rate constants of $k = Ae^{-\frac{E_a}{RT}}$ where $k$ is the rate constant, $A$ is the pre-exponential factor (frequency factor), $E_a$ is the activation energy, $R$ is the ideal gas constant ($8.314 J/(mol \cdot K)$), and $T$ is the absolute temperature (in Kelvin).
- Activation energy can be determined using the two-point form: $ln(\frac{k_2}{k_1}) = \frac{E_a}{R}(\frac{1}{T_1} - \frac{1}{T_2})$
- Homogeneous Catalysts are in the same phase as the reactants.
- Heterogeneous Catalysts are in a different phase from the reactants.
- Enzymes are biological catalysts (proteins).
- Catalysts provide an alternative reaction pathway with a lower activation energy.
- Catalysts do not change the thermodynamics of the reaction
Lab 8: Data Visualization Objectives
- After completing this week’s lab, you should be able to:
- Create basic statistical plots (histograms, box plots, scatter plots) using
matplotlib
. - Customize plot aesthetics to meet publication-quality standards.
- Generate multiple plots using
matplotlib
’ssubplot
functionality.
Instructions
- For this lab, we will be using a subset of the Integrated Postsecondary Education Data System (IPEDS) data set, focusing on a sample of 100 US-based colleges and universities.
- The data set contains the following variables:
INSTNM
: Institution nameCITY
: CitySTABBR
: State abbreviationZIP
: Zip codeCONTROL
: Control of institution (1=Private, 2=Private nonprofit, 3=Public)LOCALE
: Degree of urbanization (11=City, 12=Suburb, 13=Town, 21=Rural)ADM_RATE
: Admission rateSAT_AVG
: Average SAT scoreUGDS
: Enrollment of undergraduate certificate/degree-seeking studentsTUITIONFEE_IN
: In-state tuition and feesPCTPELL
: Percentage of undergraduate certificate/degree-seeking students receiving Pell GrantsCOMPL_RP
: Completion rateimport pandas as pd
import matplotlib.pyplot as plt
Task 1: Histograms
- Create a histogram of in-state tuition and fees (
TUITIONFEE_IN
). - Customize the plot with a title, x-axis label, and y-axis label.
- Experiment with different bin sizes to find an appropriate representation of the data.
Task 2: Box Plots
- Generate box plots of the average SAT score (
SAT_AVG
) for each type of institution control (CONTROL
). Add appropriate labels and a title to the plot. - Discuss any differences you observe between the groups.
Task 3: Scatter Plots
- Produce a scatter plot of the percentage of students receiving Pell Grants (
PCTPELL
) versus the completion rate (COMPL_RP
). - Include axis labels and a title.
- Comment on any relationship you observe between these two variables.
Task 4: Subplots
- Create a figure with two subplots side by side.
- In the first subplot, display a histogram of undergraduate enrollment (
UGDS
). - In the second subplot, show a box plot of the admission rate (
ADM_RATE
). - Make sure to label each subplot appropriately.
Task 5: Aesthetics
- Improve the aesthetics of your plots by changing colors, adjusting transparency, and adding grid lines.
- Explain how these changes enhance the readability and visual appeal of your figures.
Task 6: Saving Plots
- Save one of your plots as a high-resolution image (e.g., PNG or PDF).
- Ensure that the saved image has clear labels and is suitable for inclusion in a report or presentation.
Submission
- Submit your Python script or Jupyter Notebook containing the code for each task, along with a brief written summary of your findings and observations.
Why VLE?
- Separation is a cornerstone of chemical engineering.
- Distillation is the most common separation technique, relying on VLE.
Phase Equilibrium
- Equilibrium is a system state showing no tendency to change.
- Phase Equilibrium is equilibrium between two or more phases.
- Vapor-Liquid Equilibrium (VLE) is equilibrium between liquid and vapor phases.
VLE Criteria
- Temperature, pressure, and chemical potential of each species are equal in all phases:
- $T^{\alpha} = T^{\beta} =... = T^{\pi}$
- $P^{\alpha} = P^{\beta} =... = P^{\pi}$
- $\mu_{i}^{\alpha} = \mu_{i}^{\beta} =... = \mu_{i}^{\pi}$
- Where:
- $\alpha, \beta, \pi$ represent different phases.
- $\mu_{i}$ is the chemical potential of component i.
- Where:
Chemical Potential
- $\mu_{i} = (\frac{\partial G}{\partial n_{i}}){T,P,n{j}}$
Where:
- $G$ is the Gibbs free energy
- $n_{i}$ is the number of moles of component i.
- This partial molar property is evaluated at constant temperature, pressure, and number of moles of all other components.
Simplified Criteria
- For VLE of a multicomponent mixture:
- $T^{l} = T^{v}$
- $P^{l} = P^{v}$
- $\hat{f}{i}^{l} = \hat{f}{i}^{v}$
- Where:
- $\hat{f}_{i}^{l}$ is the fugacity of component i in the liquid phase
- $\hat{f}_{i}^{v}$ is the fugacity of component i in the vapor phase
Pure Species VLE
- For a pure species:
- $T^{l} = T^{v} = T^{sat}$
- $P^{l} = P^{v} = P^{sat}$
- $f^{l} = f^{v}$
- Where:
- $T^{sat}$ is the saturation temperature
- $P^{sat}$ is the saturation pressure
- $f^{l}$ is the fugacity of the pure liquid
- $f^{v}$ is the fugacity of the pure vapor
Vapor Pressure
- The vapor pressure ($P^{sat}$) is the pressure at which the liquid and vapor phases of a pure substance coexist in equilibrium at a given temperature.
Antoine Equation
- $\ln P^{sat} = A - \frac{B}{T + C}$
- Where:
- $P^{sat}$ is the saturation pressure
- $T$ is the temperature
- $A, B, C$ are substance-specific parameters
- Where:
Vapor Pressure Equations
- Table: Vapor Pressure Correlations | Equation | Parameters | Temperature Range | | :------------------------------- | :--------- | :---------------- | | $\ln P^{sat} = A - \frac{B}{T}$ | A, B | Narrow | | $\ln P^{sat} = A - \frac{B}{T+C}$ | A, B, C | Wide |
Clausius-Clapeyron Equation
- $\frac{d P^{sat}}{dT} = \frac{\Delta H_{vap}}{T \Delta V_{vap}}$
- Where:
- $\Delta H_{vap}$ is the enthalpy of vaporization
- $\Delta V_{vap}$ is the change in volume upon vaporization
- Where:
Simplified Clausius-Clapeyron Equation
- $\frac{d \ln P^{sat}}{dT} = \frac{\Delta H_{vap}}{RT^2}$
- Assuming: Ideal gas behavior for the vapor phase Negligible liquid volume compared to vapor volume Constant $\Delta H_{vap}$
Integrating Simplified Equation
- $\ln P^{sat} = -\frac{\Delta H_{vap}}{RT} + C$
- Where C is the integration constant.
Vectores
Suma de Vectores
Método AnalÃtico
- Componentes rectangulares de un vector:
$\overrightarrow{A} = A_x\hat{i} + A_y\hat{j}$
$A_x = A\cos(\theta)$ $A_y = A\sin(\theta)$
$\overrightarrow{R} = \overrightarrow{A} + \overrightarrow{B} = (A_x + B_x)\hat{i} + (A_y + B_y)\hat{j}$
$R_x = A_x + B_x$ $R_y = A_y + B_y$
$R = \sqrt{R_x^2 + R_y^2}$
$\tan(\theta) = \frac{R_y}{R_x}$
$\theta = \arctan(\frac{R_y}{R_x})$
- Dados los vectores:
$\overrightarrow{A} = 2\hat{i} + 2\hat{j}$ $\overrightarrow{B} = 4\hat{i} - 3\hat{j}$
- El vector resultante $\overrightarrow{R}$ es
$\overrightarrow{R} = (2+4)\hat{i} + (2-3)\hat{j}$ $\overrightarrow{R} = 6\hat{i} - 1\hat{j}$
$R = \sqrt{6^2 + (-1)^2} = \sqrt{37} \approx 6.08$
$\theta = \arctan(\frac{-1}{6}) = -9.46°$
Producto Escalar (Producto Punto)
$\overrightarrow{A} \cdot \overrightarrow{B} = |\overrightarrow{A}||\overrightarrow{B}|\cos(\theta)$
$\overrightarrow{A} \cdot \overrightarrow{B} = (A_x\hat{i} + A_y\hat{j}) \cdot (B_x\hat{i} + B_y\hat{j}) = A_xB_x + A_yB_y$
- Dados los vectores:
$\overrightarrow{A} = 2\hat{i} + 2\hat{j}$ $\overrightarrow{B} = 4\hat{i} - 3\hat{j}$
- El producto escalar $\overrightarrow{A} \cdot \overrightarrow{B}$ es
$\overrightarrow{A} \cdot \overrightarrow{B} = (2)(4) + (2)(-3) = 8 - 6 = 2$
Producto Vectorial (Producto Cruz)
$\overrightarrow{A} \times \overrightarrow{B} = |\overrightarrow{A}||\overrightarrow{B}|\sin(\theta)\hat{n}$
$\overrightarrow{A} \times \overrightarrow{B} = (A_x\hat{i} + A_y\hat{j} + A_z\hat{k}) \times (B_x\hat{i} + B_y\hat{j} + B_z\hat{k}) = (A_yB_z - A_zB_y)\hat{i} + (A_zB_x - A_xB_z)\hat{j} + (A_xB_y - A_yB_x)\hat{k}$
$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ A_x & A_y & A_z \ B_x & B_y & B_z \end{vmatrix}$
- Dados los vectores:
$\overrightarrow{A} = 2\hat{i} + 2\hat{j} + 0\hat{k}$ $\overrightarrow{B} = 4\hat{i} - 3\hat{j} + 0\hat{k}$
- El producto vectorial $\overrightarrow{A} \times \overrightarrow{B}$ es
$\overrightarrow{A} \times \overrightarrow{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \ 2 & 2 & 0 \ 4 & -3 & 0 \end{vmatrix} = (0-0)\hat{i} + (0-0)\hat{j} + (-6-8)\hat{k} = -14\hat{k}$
Reguläre Ausdrücke
- Ein regulärer Ausdruck (Regex oder RegExp von engl. regular expression) ist in der theoretischen Informatik eine Zeichenkette, die einer bestimmten Menge von Zeichenketten entspricht.
- Mithilfe von regulären Ausdrücken konnen also Muster in Texten gefunden, ersetzt oder extrahiert werden.
Syntax
Zeichen | Bedeutung |
---|---|
. | Steht für ein beliebiges Zeichen (ausser Zeilenende). |
* |
Das vorangehende Zeichen kommt null oder mehr Mal vor. |
+ |
Das vorangehende Zeichen kommt einmal oder mehr Mal vor. |
? | Das vorangehende Zeichen kommt null oder einmal vor. |
[] |
Definiert eine Zeichenklasse, d. h. eines der Zeichen zwischen den Klammern muss vorkommen. Z. B. entspricht [abc] entweder a, b oder c. |
[^] |
Negiert eine Zeichenklasse. Z. B. entspricht [^abc] jedem Zeichen ausser a, b und c. |
() |
Gruppiert einen Ausdruck. |
` | ` |
^ |
Passt auf den Anfang einer Zeichenkette. |
$ |
Passt auf das Ende einer Zeichenkette. |
\ |
Maskiert ein Sonderzeichen, sodass es als normales Zeichen interpretiert wird. Z. B. entspricht \. einem Punkt. |
\d |
Entspricht einer Ziffer (0-9). |
\w |
Entspricht einem "Wortzeichen" (Buchstaben, Ziffern und Unterstrich). |
\s |
Entspricht einem Leerzeichen (Whitespace). |
{n} |
Das vorangehende Zeichen kommt genau n Mal vor. |
{n,} |
Das vorangehende Zeichen kommt mindestens n Mal vor. |
{n,m} |
Das vorangehende Zeichen kommt mindestens n und höchstens m Mal vor. |
Beispiele
- Einige Beispiele für reguläre Ausdrücke und ihre Bedeutung:
Hallo - Findet die Zeichenkette "Hallo". \d+ - Findet eine oder mehrere Ziffern. [a-z]+ - Findet eine oder mehrere Kleinbuchstaben. [A-Z][a-z]* - Findet ein Wort, das mit einem Grossbuchstaben beginnt, gefolgt von null oder mehr Kleinbuchstaben. ^https?://.*.de$ - Findet eine URL, die mit "http://" oder "https://" beginnt und mit ".de" endet.
verwendung
- Reguläre Ausdrücke werden in vielen Programmiersprachen und Texteditoren unterstützt. In Python kann man beispielsweise das re-Modul verwenden, um mit regulären Ausdrücken zu arbeiten:
import re
text = "Hallo Welt! 123"
## Findet alle Zahlen im Text
zahlen = re.findall(r'\d+', text)
print(zahlen) # Ausgabe: ['123']
## Ersetzt alle Zahlen durch "XXX"
neuer_text = re.sub(r'\d+', 'XXX', text)
print(neuer_text) # Ausgabe: Hallo Welt! XXX
- Dieses Modul stellt Funktionen wie search(), match(), findall() und sub() zur Verfügung, um Muster in Zeichenketten zu suchen, zu finden und zu ersetzen.
Communication Model
- The general communication model's components: Source, Encoder, Channel, Decoder, Sink
- Source-> message
- Encoder -> codeword
- Channel -> noisy codeword
- Decoder -> message
Channel Definitions
- Discrete Memoryless Channel (DMC) input alphabet is $\mathcal{X}$
- Discrete Memoryless Channel (DMC) output alphabet is $\mathcal{Y}$
- Discrete Memoryless Channel (DMC) channel transition probabilities are $p(y|x)$, $x \in \mathcal{X}$, $y \in \mathcal{Y}$
- "Memoryless" means $\displaystyle p(y_n|x_1, \dots, x_n, y_1, \dots, y_{n-1}) = p(y_n|x_n)$
- Channel Use: Each time a symbol is sent through the channel.
- Index set ${1, 2, \dots, M}$.
- Encoding function $f: {1, 2, \dots, M} \rightarrow \mathcal{X}^n$, yielding codewords $x^n(1), x^n(2), \dots, x^n(M)$.
- Decoding function $g: \mathcal{Y}^n \rightarrow {1, 2, \dots, M}$.
- Rate of the code: $R = \frac{\log M}{n}$ bits per channel use.
- Conditional probability of error: $\lambda_i = P(g(Y^n) \neq i | X^n = x^n(i))$, for $i \in {1, 2, \dots, M}$.
- Maximal probability of error: $\lambda^{(n)} = \max_{i \in {1, 2, \dots, M}} \lambda_i$.
- Average probability of error: $P_e^{(n)} = \frac{1}{M} \sum_{i=1}^M \lambda_i = \frac{1}{M} \sum_{i=1}^M P(g(Y^n) \neq i | X^n = x^n(i))$.
- A rate $R$ is achievable if there exists a sequence of $(2^{nR}, n)$ codes such that $\lambda^{(n)} \rightarrow 0$ as $n \rightarrow \infty$.
- The channel capacity is the supremum of all achievable rates, i.e. $$C = \sup {R: R \text{ is achievable} }$$
Jointly Typical Sequences
- The set $A_{\epsilon}^{(n)}$ of jointly typical sequences $(X^n, Y^n)$ with respect to $p(x, y)$ is the set of $n$-sequences with empirical entropies close to the true entropies:
$$A_{\epsilon}^{(n)} = \left{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \begin{array}{l} \left|-\frac{1}{n} \log p(x^n) - H(X)\right| < \epsilon, \ \left|-\frac{1}{n} \log p(y^n) - H(Y)\right| < \epsilon, \ \left|-\frac{1}{n} \log p(x^n, y^n) - H(X, Y)\right| < \epsilon \end{array} \right}$$
- Where:
- $p(x^n) = \prod_{i=1}^n p(x_i)$
- $p(y^n) = \prod_{i=1}^n p(y_i)$
- $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$ If $(X^n, Y^n)$ be sequences of length $n$ drawn i.i.d. according to $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$, then
- $P((X^n, Y^n) \in A_{\epsilon}^{(n)}) \rightarrow 1$ as $n \rightarrow \infty$
- $|A_{\epsilon}^{(n)}| \leq 2^{n(H(X, Y) + \epsilon)}$ If $(\tilde{X}^n, \tilde{Y}^n) \sim p(x^n) p(y^n)$, then
- $$P((\tilde{X}^n, \tilde{Y}^n) \in A_{\epsilon}^{(n)}) \leq 2^{-n(I(X; Y) - 3\epsilon)}$$
- Where:
Channel Capacity Theorem
- The capacity of a discrete memoryless channel is given by $$C = \max_{p(x)} I(X; Y)$$ where $I(X; Y)$ is the mutual information between the input and output of the channel, and the maximum is taken over all possible input distributions $p(x)$.
Introduction
- Specific intensity $I_{\nu}$: energy flux per unit frequency per unit solid angle.
$d E=I_{\nu} d A \cos \theta d \Omega d \nu d t$
$I_{\nu}$: erg $\mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1}$ ster $^{-1}$
- Isotropic radiation: radiation field is the same in all directions.
- Mean intensity: average of specific intensity over all directions
$J_{\nu}=\frac{1}{4 \pi} \int I_{\nu} d \Omega$
- Isotropic radiation: $J_{\nu}=I_{\nu}$
- Energy density:
$u_{\nu}=\frac{1}{c} \int I_{\nu} d \Omega$
- Isotropic radiation: $u_{\nu}=\frac{4 \pi}{c} I_{\nu}=\frac{4 \pi}{c} J_{\nu}$
- Flux: net energy crossing surface in direction $\vec{n}$
$F_{\nu}=\int I_{\nu} \cos \theta d \Omega$ Isotropic radiation: $F_{\nu}=0$
Opacity, Emission
- Opacity: absorption coefficient $\alpha_{\nu}$: fraction of intensity lost per unit length
$d I_{\nu}=-\alpha_{\nu} I_{\nu} d s$
$\alpha_{\nu}$: $\mathrm{cm}^{-1}$
- Optical depth:
$d \tau_{\nu}=\alpha_{\nu} d s$
$\tau_{\nu}=\int \alpha_{\nu} d s$
$I_{\nu}(s)=I_{\nu}(0) e^{-\tau_{\nu}}$
- Opaque: $\tau_{\nu} \gg 1$
- Transparent: $\tau_{\nu} \ll 1$
- Emission coefficient $j_{\nu}$: energy emitted per unit length per unit time per unit solid angle per unit frequency
$d I_{\nu}=j_{\nu} d s$
$j_{\nu}$: erg $\mathrm{cm}^{-3} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1}$ ster $^{-1}$
- Source function:
$S_{\nu} \equiv \frac{j_{\nu}}{\alpha_{\nu}}$
- Radiative transfer equation:
$\frac{d I_{\nu}}{d s}=-\alpha_{\nu} I_{\nu}+j_{\nu}$
$\frac{d I_{\nu}}{d \tau_{\nu}}=-I_{\nu}+S_{\nu}$
Thermal Radiation
- Thermodynamic equilibrium (TE): system in complete equilibrium
$I_{\nu}=B_{\nu}(T)$
$B_{\nu}(T)$: Planck function
$B_{\nu}(T)=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{h \nu / k T}-1}$
$B_{\lambda}(T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1}$
- Kirchhoff's Law (TE):
$j_{\nu}=\alpha_{\nu} B_{\nu}(T)$
$S_{\nu}=B_{\nu}(T)$
- Local thermodynamic equilibrium (LTE): matter in TE at a certain $T$, radiation not necessarily in TE
$S_{\nu}=B_{\nu}(T)$
- Radiative transfer equation (LTE):
$\frac{d I_{\nu}}{d \tau_{\nu}}=-I_{\nu}+B_{\nu}(T)$
- Solution to radiative transfer equation:
$I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0) e^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}} e^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} B_{\nu}\left(T\left[\tau_{\nu}^{\prime}\right]\right) d \tau_{\nu}^{\prime}$
- Optically thick source: $\tau_{\nu} \gg 1$
$I_{\nu} \rightarrow B_{\nu}(T)$
- Optically thin source: $\tau_{\nu} \ll 1$
$I_{\nu}=I_{\nu}(0)+\left(B_{\nu}(T)-I_{\nu}(0)\right) \tau_{\nu}$
- If background source absent:
$I_{\nu}=B_{\nu}(T) \tau_{\nu}=j_{\nu} L$
- L: geometrical depth of the source
Blackbody Radiation
Planck function
- $B_{\nu}(T)=\frac{2 h \nu^{3}}{c^{2}} \frac{1}{e^{h \nu / k T}-1}$
$B_{\lambda}(T)=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1}$
- Wien's displacement law: peak of $B_{\nu}(T)$
$\nu_{\max } \approx 5.88 \times 10^{10} \mathrm{~Hz} \mathrm{~K}^{-1} T$
$\lambda_{\max } \approx 0.29 \mathrm{~cm} \mathrm{~K} / T$
- Stefan-Boltzmann law: integrated Planck function
$F=\int B_{\nu}(T) d \Omega=\sigma T^{4}$
$\sigma=\frac{2 \pi^{5} k^{4}}{15 c^{2} h^{3}}=5.67 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{~K}^{-4}$
- Energy density:
$u=\frac{4 \pi}{c} \int B_{\nu}(T) d \nu=a T^{4}$
$a=\frac{4 \sigma}{c}=7.56 \times 10^{-15} \mathrm{erg} \mathrm{cm}^{-3} \mathrm{~K}^{-4}$
Brightness Temperature
- Brightness temperature $T_{b}$: temperature a blackbody would have to have to give the same intensity at frequency $\nu$
$I_{\nu}=B_{\nu}\left(T_{b}\right)$
- Rayleigh-Jeans limit: $h \nu \ll k T$
$B_{\nu}(T) \approx \frac{2 \nu^{2}}{c^{2}} k T$
$T_{b}=\frac{c^{2}}{2 k \nu^{2}} I_{\nu}$
- Optically thin source:
$I_{\nu}=B_{\nu}(T) \tau_{\nu}$
$T_{b}=T \tau_{\nu}$
Microscopic Processes
- Einstein coefficients:
- $A_{21}$: spontaneous emission
- $B_{12}$: absorption
- $B_{21}$: stimulated emission
$n_{1} B_{12} \bar{J}=n_{2} A_{21}+n_{2} B_{21} \bar{J}$
- $\bar{J}$: average intensity at the transition frequency
- Einstein relations:
$g_{1} B_{12}=g_{2} B_{21}$
$A_{21}=\frac{2 h \nu^{3}}{c^{2}} B_{21}$
$g_{i}$: statistical weight of level $i$
- Thermal distribution:
$\frac{n_{2}}{n_{1}}=\frac{g_{2}}{g_{1}} e^{-h \nu / k T}$
- Absorption coefficient:
$\alpha_{\nu}=\frac{h \nu}{4 \pi} n_{1} B_{12} \phi(\nu)\left(1-e^{-h \nu / k T}\right)$
- $\phi(\nu)$: line profile function
Radiation from Moving Charges
- Larmor's formula: power radiated by a nonrelativistic accelerated charge
$P=\frac{2 q^{2} a^{2}}{3 c^{3}}$
- $q$: charge
- $a$: acceleration
- Relativistic Larmor's formula:
$P=\frac{2 q^{2}}{3 c^{3}} \gamma^{6}\left(a_{\perp}^{2}+\gamma^{2} a_{|}^{2}\right)$
$\gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$: Lorentz factor
$a_{\perp}$: acceleration perpendicular to velocity
$a_{|}$: acceleration parallel to velocity
- Dipole approximation:
$\frac{d P}{d \Omega}=\frac{q^{2} a^{2}}{4 \pi c^{3}} \sin ^{2} \Theta$
- $\Theta$: angle between acceleration and direction of observation
- Thomson scattering: scattering of radiation by free electrons
$\frac{d \sigma}{d \Omega}=\frac{e^{4}}{m^{2} c^{4}} \frac{1}{2}\left(1+\cos ^{2} \Theta\right)=r_{0}^{2} \frac{1}{2}\left(1+\cos ^{2} \Theta\right)$
$r_{0}=\frac{e^{2}}{m c^{2}}=2.82 \times 10^{-13} \mathrm{~cm}$: classical electron radius
$\sigma_{T}=\int \frac{d \sigma}{d \Omega} d \Omega=\frac{8 \pi}{3} r_{0}^{2}=6.65 \times 10^{-25} \mathrm{~cm}^{2}$: Thomson cross section
Bremsstrahlung
- Bremsstrahlung: free-free emission
- Electron accelerated by ion.
- Thermal bremsstrahlung:
$\epsilon_{f f}^{\text {nonrel }}=\frac{16 \pi e^{6}}{3 \sqrt{3} m_{e}^{2} c^{3}}\left(\frac{2 \pi m_{e}}{3 k}\right)^{1 / 2} T^{-1 / 2} n_{e} n_{i} Z^{2} g_{f f}$
$\epsilon_{f f}^{\text {nonrel }}$: emission coefficient
$n_{e}$: electron density
$n_{i}$: ion density
$Z$: ion charge
$g_{f f}$: Gaunt factor $\sim 1$
- Optically thin thermal bremsstrahlung:
$I_{\nu}=j_{\nu} L$
$I_{\nu} \propto \nu^{
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.