Podcast
Questions and Answers
Quelle est la relation correcte entre f, f10 et f20 ?
Quelle est la relation correcte entre f, f10 et f20 ?
Pourquoi peut-on dire que F = A + F ?
Pourquoi peut-on dire que F = A + F ?
Quelle est la direction de Fi si les Fi sont concourants ou sécants ?
Quelle est la direction de Fi si les Fi sont concourants ou sécants ?
Quelle est la conséquence si F ≠ ∅ ?
Quelle est la conséquence si F ≠ ∅ ?
Signup and view all the answers
Que représente l'égalité F − f = F dans le contexte de l'espace vectoriel E ?
Que représente l'égalité F − f = F dans le contexte de l'espace vectoriel E ?
Signup and view all the answers
Quelle est la condition pour dire que les FT i sont concourants ou sécants ?
Quelle est la condition pour dire que les FT i sont concourants ou sécants ?
Signup and view all the answers
Si E = F + G, que peut-on conclure sur les vecteurs M + f et N - g ?
Si E = F + G, que peut-on conclure sur les vecteurs M + f et N - g ?
Signup and view all the answers
Que signifie le fait que F et G soient en somme directe ?
Que signifie le fait que F et G soient en somme directe ?
Signup and view all the answers
Quelle est la condition nécessaire pour que F et G soient en somme directe ?
Quelle est la condition nécessaire pour que F et G soient en somme directe ?
Signup and view all the answers
Que peut-on conclure si F ∩ G contient uniquement l'élément neutre {0E} ?
Que peut-on conclure si F ∩ G contient uniquement l'élément neutre {0E} ?
Signup and view all the answers
Quel lien existe entre la formule de Grassmann et la dimension de F + G ?
Quel lien existe entre la formule de Grassmann et la dimension de F + G ?
Signup and view all the answers
Dans l'exemple donné, comment peut-on décrire le plan P et la droite D en termes de somme directe ?
Dans l'exemple donné, comment peut-on décrire le plan P et la droite D en termes de somme directe ?
Signup and view all the answers
Quelle est la définition de la somme de deux sous-espaces vectoriels F et G dans un espace vectoriel E ?
Quelle est la définition de la somme de deux sous-espaces vectoriels F et G dans un espace vectoriel E ?
Signup and view all the answers
Pourquoi la famille {(1, 0), (i, 0), (0, 1), (0, i)} est-elle une base de C2 sur R ?
Pourquoi la famille {(1, 0), (i, 0), (0, 1), (0, i)} est-elle une base de C2 sur R ?
Signup and view all the answers
Pourquoi l'ensemble F + G est-il considéré comme le plus petit sous-espace vectoriel de E contenant F et G ?
Pourquoi l'ensemble F + G est-il considéré comme le plus petit sous-espace vectoriel de E contenant F et G ?
Signup and view all the answers
Que représente Vect(X ∪ Y) dans le théorème 2.53 ?
Que représente Vect(X ∪ Y) dans le théorème 2.53 ?
Signup and view all the answers
Pourquoi l'ensemble X ∪ Y engendre-t-il la somme F + G selon le théorème 2.53 ?
Pourquoi l'ensemble X ∪ Y engendre-t-il la somme F + G selon le théorème 2.53 ?
Signup and view all the answers
Quelle est la dimension de la base canonique de C2 comme C-espace vectoriel?
Quelle est la dimension de la base canonique de C2 comme C-espace vectoriel?
Signup and view all the answers
Study Notes
- Si E est un espace vectoriel de dimension k, avec F et G comme sous-espaces affines de directions respectives F et G, alors si E = F + G, F et G sont concourants.
- La somme directe de F et G est définie comme une décomposition unique d'un vecteur de F + G en un vecteur de F et un vecteur de G. Cela se note F ⊕ G.
- F et G sont en somme directe si et seulement si F ∩ G = {0E}, avec dim(F + G) = dim F + dim G si les dimensions de F et G sont définies.
- Dans R3, le plan P et la droite D sont en somme directe.
- Une base de E comme espace complexe peut être transformée en une base de E comme espace réel en doublant ses éléments.
- La somme de deux sous-espaces vectoriels F et G est le plus petit sous-espace contenant à la fois F et G.
- Le vecteur engendré par l'union de deux parties X et Y est égal à la somme des vecteurs engendrés par X et Y.
- Un sous-espace affine F peut être représenté comme F = A + F pour tout A appartenant à F.
- Des sous-espaces affines sont dits concourants s'ils ont une intersection non vide, ce qui signifie que leur somme est un sous-espace affine également.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Démonstration de la concourance des sous-espaces F et G de l'espace vectoriel E, ainsi que la définition de la somme directe de deux sous-espaces. En utilisant la décomposition d'un vecteur de F + G en un vecteur de F et un vecteur de G, on démontre la concourance de F et G.