Solving Linear Equations: Substitution, Elimination, Cross Multiplication, Graphing
11 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

ما هي القيمة الصحيحة للمتغير x في نظام المعادلات x/2 = y/3 و x/4 = y/5 بعد حله باستخدام طريقة الضرب التبادلي؟

  • 5/2
  • 8/15 (correct)
  • 1/5
  • 12/10
  • كيف يتم حل نظام المعادلات x + y = 5 و 2x + y = 6 بواسطة طريقة الاختلاف؟

  • قسمة المعادلات
  • جمع الناتج
  • ضرب المعادلات بعضها (correct)
  • جمع المعادلات
  • ما هي الطريقة المستخدمة لحل نظام المعادلات x/2 = y/3 و x/4 = y/5 بالطريقة التي تشمل عملية الضرب التبادلي؟

  • طريقة الضرب المشترك (correct)
  • طريقة الاختلاف
  • الطريقة الرسمية
  • طريقة المقارنة
  • كيف يتم حساب قيمة y في نظام المعادلات x/2 = y/3 و x/4 = y/5 بعد استخدام طريقة الضرب التبادلي؟

    <p>1.2</p> Signup and view all the answers

    ما هو الهدف من استخدام طريقة الرسم لحل المعادلات؟

    <p>العثور على التقاطع بين المعادلات لحساب قيم المتغيرات</p> Signup and view all the answers

    ما هو التعريف الصحيح للمعادلات الخطية؟

    <p>تعبيرات رياضية تحتوي على متغيرات درجتها واحد أو صفر</p> Signup and view all the answers

    ما هي الطريقة المستخدمة في حل المعادلات الخطية عندما يكون لدينا معادلات ذات خطوتين؟

    <p>طريقة الاستبدال</p> Signup and view all the answers

    كيف تستخدم طريقة الاستبدال في حل المعادلات الخطية؟

    <p>تحل إحدى المعادلات من أجل المتغير الأول ثم تستخدم قيمة المتغير في المعادلة الثانية</p> Signup and view all the answers

    ما هي الطريقة المستخدمة في حل المعادلات الخطية عندما نكون بحاجة لإزالة متغير؟

    <p>طريقة التصفية</p> Signup and view all the answers

    كيف تستخدم طريقة التبديل في حل المعادلات الخطية؟

    <p>تحل إحدى المعادلات من أجل المتغير الأول ثم تستخدم قيمة المتغير في المعادلة الثانية</p> Signup and view all the answers

    ما هو الهدف من حل المعادلات الخطية؟

    <p>إيجاد قيم للمتغيرات تجعل المعادلة صحيحة</p> Signup and view all the answers

    Study Notes

    Solving Linear Equations

    Linear equations are mathematical expressions where every term is either of degree one or zero. They have many applications in various fields such as physics, engineering, computer science, economics, social sciences, and more. Solving linear equations involves finding the values of variables that make the equation true. There are several methods to solve linear equations, including substitution, elimination, cross multiplication, and graphing. In this article, we will discuss these methods in detail.

    Substitution Method

    The substitution method is used when dealing with two-step equations. It involves solving the first equation for one variable while keeping the other constant, and then using the resulting value to substitute back into the second equation to find the value of the remaining variable. For example, consider the system of equations:

    x + y = 5
    2x - y = 6
    

    To solve this system using the substitution method, you would first solve the first equation for x:

    x + y = 5
    y = 5 - x
    

    Now, take this expression and substitute it back into the second equation:

    2(5 - x) - y = 6
    2(5 - x) - (5 - x) = 6
    

    Simplifying and solving for x:

    2 \* 5 - 2 \* x - 5 + x = 6
    10 - 2x + x = 6
    2x = 4
    x = 2
    

    Now that we have the value of x, we can plug it back into the first equation to find the value of y:

    x + y = 5
    2 + y = 5
    y = 3
    

    Elimination Method

    The elimination method is used when dealing with two-step equations. It involves adding or subtracting the equations to eliminate one of the variables. For example, consider the system of equations:

    x + y = 5
    2x + y = 6
    

    To solve this system using the elimination method, you would first subtract the first equation from the second equation:

    2x + y = 6
    2x + y - (x + y) = 6
    

    Simplifying and solving for x:

    2x + y - x - y = 6
    x = 6
    

    Now that we have the value of x, we can plug it back into either equation to find the value of y:

    x + y = 5
    6 + y = 5
    y = 5 - 6 = -1
    

    Cross Multiplication Method

    The cross multiplication method is used when dealing with two equations with two variables. It involves cross-multiplying the equations and then solving for one of the variables. For example, consider the system of equations:

    x/2 = y/3
    x/4 = y/5
    

    To solve this system using the cross multiplication method, you would first cross-multiply:

    x/2 = y/3
    2y = 3x
    
    x/4 = y/5
    5x = 4y
    

    Now, we have two equations with two variables. We can solve one of them for one of the variables, and then plug that value into the other equation to find the value of the remaining variable. Let's solve the first equation for x:

    2y = 3x
    x = (2y)/3
    

    Now, plug this expression for x into the second equation:

    5((2y)/3) = 4y
    2y = 12y/3
    

    Simplifying and solving for y:

    10y/3 = 12y/3
    y = 12y/10
    y = 12/10
    y = 1.2
    

    Now that we have the value of y, we can plug it back into either equation to find the value of x:

    x/2 = y/3
    x/2 = (1.2)/3
    x = 2 \* (1.2)/3
    x = 2 \* (4/15)
    x = 8/15
    

    Graphing Method

    The graphing method is used when dealing with two-step equations. It involves graphing the equations and finding the intersection point, which represents the solution. For example, consider the system of equations:

    x + y = 5
    x - y = 3
    

    To solve this system using the graphing method, you would first graph each equation on the same coordinate plane:

    y = x + 5
    y = x - 3
    

    The equations intersect at the point (2, 2). This means that when x is 2 and y is 2, both equations are true. Therefore, the solution to the system of equations is x = 2 and y = 2.

    In conclusion, solving linear equations involves various methods such as substitution, elimination, cross multiplication, and graphing. Each method has its own advantages and limitations, and choosing the appropriate method depends on the specific problem at hand.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Explore different methods for solving linear equations, including substitution, elimination, cross multiplication, and graphing. Learn how to apply these methods to find the values of variables that satisfy the equations. Each method offers a unique approach to solving linear equations and understanding their applications across various fields.

    More Like This

    Use Quizgecko on...
    Browser
    Browser