Podcast
Questions and Answers
Which of the following is a possible solution for the equation $\frac{x}{2} + \frac{y}{x+10} = \frac{3}{4}$?
Which of the following is a possible solution for the equation $\frac{x}{2} + \frac{y}{x+10} = \frac{3}{4}$?
Which of the following is NOT a possible solution for the equation $\frac{x}{2} + \frac{y}{x+10} = \frac{3}{4}$?
Which of the following is NOT a possible solution for the equation $\frac{x}{2} + \frac{y}{x+10} = \frac{3}{4}$?
What is the value of $y$ when $x = -5$ in the equation $\frac{x}{2} + \frac{y}{x+10} = \frac{3}{4}$?
What is the value of $y$ when $x = -5$ in the equation $\frac{x}{2} + \frac{y}{x+10} = \frac{3}{4}$?
Какие числа являются расширениями рациональных чисел?
Какие числа являются расширениями рациональных чисел?
Signup and view all the answers
Что такое мнимые числа?
Что такое мнимые числа?
Signup and view all the answers
Что является расширением целых чисел?
Что является расширением целых чисел?
Signup and view all the answers
Какие числа являются расширениями натуральных чисел?
Какие числа являются расширениями натуральных чисел?
Signup and view all the answers
Study Notes
Equation Solutions
- The equation to solve is (\frac{x}{2} + \frac{y}{x+10} = \frac{3}{4}).
- Possible solutions can include various pairs of ((x, y)) that satisfy the equation.
- To check if a specific pair is a solution, substitute the values into the equation and verify if the left-hand side equals (\frac{3}{4}).
- Identifying a value that does not meet this condition indicates it is not a solution.
Finding (y) for Specific (x)
- Substitute (x = -5) into the equation (\frac{-5}{2} + \frac{y}{-5+10} = \frac{3}{4}).
- Calculate how (\frac{-5}{2}) is evaluated and then solve for (y) as follows:
- (\frac{-5}{10} + \frac{y}{5} = \frac{3}{4})
- Rearranging leads to finding (y).
Extensions of Number Sets
- Rational number extensions include all numbers that can be expressed as a fraction of integers, as well as certain additional numbers such as square roots or other algebraic numbers.
- Imaginary numbers are defined as (a + bi) where (i) is the square root of (-1), providing solutions to equations that lack real solutions.
- Integer extensions include rational numbers, where every integer can be expressed in fraction form.
- Natural number extensions may involve whole numbers, integers, and fractions, broadening the concept of counting.
Summary of Number Extensions
- Rational numbers extend to include irrational numbers.
- Imaginary numbers comprise a separate category outside the reals, essential in complex number theory.
- Whole numbers include all integers (positive, negative, and zero).
- Natural numbers can potentially expand into greater realms like integers and rational numbers.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Test your knowledge of solving equations with fractions in this quiz. Determine possible solutions, identify non-solutions, and find the value of a variable given a specific value.