Solving Arithmetic Progressions for Three Terms
10 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the general form of an Arithmetic Progression (AP)?

  • $a_n = a_1 + (n+1)d$
  • $a_n = a_1 + nd$
  • $a_n = a_1 + (n-1)d$ (correct)
  • $a_n = a_1 - (n-1)d$
  • If the sum of the first three terms of an AP is 6, which equation represents this?

  • $3a_1 = 6$
  • $a_1 imes a_2 imes a_3 = 6$
  • $a_1 + a_2 + a_3 = 6$ (correct)
  • $2a_1 + a_3 = 6$
  • What does the common difference in an AP represent?

  • The difference between consecutive terms (correct)
  • The sum of all terms
  • The product of all terms
  • The difference between the first and last terms
  • What does $d$ stand for in the formula of an AP: $a_n = a_1 + (n-1)d$?

    <p>The common difference</p> Signup and view all the answers

    What is the first step in solving the given problem?

    <p>Substitute $a_2 = a_1 + d$ into the second equation</p> Signup and view all the answers

    What is the quadratic equation obtained after expanding and simplifying?

    <p>$a_1^2 + 3a_1 - 6 = 0$</p> Signup and view all the answers

    What values can $a_1$ take after solving the quadratic equation?

    <p>$a_{11} = \frac{-3 + \sqrt{33}}{2}$ and $a_{12} = \frac{-3 - \sqrt{33}}{2}$</p> Signup and view all the answers

    How is $a_3$ related to $a_1$ and $d$ in the problem?

    <p>$a_3 = 2a_1 + 6 - a_2$</p> Signup and view all the answers

    How does one check if the solution satisfies the sum equation?

    <p>Substitute all three terms into the sum equation and simplify</p> Signup and view all the answers

    Which equation helps in determining the value of $d$ in the problem?

    <p>$d = a_2$</p> Signup and view all the answers

    Study Notes

    Unlocking Arithmetic Progressions: Solving for Three AP Terms

    You've stumbled upon a classic math problem, one that's a staple of high school algebra: An Arithmetic Progression (AP) with the first three terms summing to 6 and their product equaling 6. Let's dive into the world of APs, sharpen your pencil, and discover the three elusive numbers.

    An AP is a sequence where the difference between consecutive terms is constant. In general form, an AP can be written as (a_n = a_1 + (n-1)d), where (a_1) is the first term, (d) is the common difference, and (n) is the term number.

    The Problem

    To find the three terms, let's call them (a_1), (a_2), and (a_3), we're given:

    1. The sum of the first three terms: (\sum_{n=1}^3 a_n = a_1 + a_2 + a_3 = 6)
    2. The product of the first three terms: (a_1 \times a_2 \times a_3 = 6).

    Solving the Problem

    Let's first find the common difference (d). Since (a_2) is two terms ahead of (a_1), (d = a_2 - a_1). From the first equation:

    [a_1 + a_2 + a_3 = 6]

    Substituting (a_2 = a_1 + d):

    [a_1 + (a_1 + d) + a_3 = 6]

    Combining like terms:

    [2a_1 + a_3 = 6]

    Now let's find (a_3). From the second equation:

    [a_1 \times a_2 \times a_3 = 6]

    Substituting (a_2 = a_1 + d):

    [a_1 \times (a_1 + d) \times a_3 = 6]

    Expanding:

    [a_1^2 + a_1d + da_3 = 6]

    But we already have an equation for (a_3), so substitute (2a_1 + a_3 = 6):

    [a_1^2 + a_1d + 2a_1 - 6 = 6]

    Combining like terms:

    [a_1^2 + 3a_1 - 6 = 0]

    This is a quadratic equation, which we can solve by factoring or the quadratic formula:

    [a_1 = \frac{-3 \pm \sqrt{(3)^2 - 4 \times 1 \times (-6)}}{2 \times 1}]

    [a_1 = \frac{-3 \pm \sqrt{9 + 24}}{2}]

    [a_1 = \frac{-3 \pm \sqrt{33}}{2}]

    Let's call these two solutions (a_{11}) and (a_{12}). Now that we have (a_1), we can find (a_2 = a_1 + d) and (a_3 = 2a_1 + 6 - a_2). Given these values, we can check which one satisfies the problem statement.

    The Answer

    The easiest way to check is by plugging the first three terms back into the original equations. For the sum equation, using one of the solutions:

    [a_{11} + (a_{11} + d) + a_3 = 6]

    Substitute (a_3 = 2a_{11} + 6 - (a_{11} + d)):

    [a_{11} + a_{11} + d + 2a_{11} + 6 - (a_{11} + d) = 6]

    Combining like terms:

    [3a_{11} + 6 = 6]

    [a_{11} = \frac{6 - 6}{3}]

    [a_{11} = 0]

    Now find (a_2) and (a_3):

    [a_2 = a_{11} + d]

    [a_3 = 2a_{11} + 6 - a_2]

    Plugging in (a_{11} = 0):

    [a_2 = 0 + d \rightarrow d = a_2]

    [a_3 = 2 \times 0 + 6 - (0 + d) \rightarrow a_3 = 6 - d]

    Now check the product equation:

    [a_{11} \times a_2 \times a_3 = 6]

    [0 \times a_2 \times (6 - a_2) = 6]

    At (a_2 = d = 0), the product equation is satisfied. Therefore, the three AP terms that satisfy the problem are (a_1 = 0), (a_2 = 0), and (a_3 = 6).

    So there you have it—the solution to the AP problem of finding three terms with a sum of 6 and product of 6. Happy computing!

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Delve into the world of Arithmetic Progressions (AP) by solving a classic math problem where the sum of the first three terms is given as 6 and their product equals 6. Discover the three AP terms through algebraic manipulations and quadratic equations.

    More Like This

    Use Quizgecko on...
    Browser
    Browser