Podcast
Questions and Answers
Dos sistemas lineales con matrices orladas equivalentes son siempre incompatibles.
Dos sistemas lineales con matrices orladas equivalentes son siempre incompatibles.
False
Un sistema lineal compatible indeterminado tiene una solución única.
Un sistema lineal compatible indeterminado tiene una solución única.
False
La eliminación de Gauss se basa en operaciones elementales de filas para resolver sistemas lineales.
La eliminación de Gauss se basa en operaciones elementales de filas para resolver sistemas lineales.
True
Las matrices ortogonales siempre tienen un determinante distinto de cero.
Las matrices ortogonales siempre tienen un determinante distinto de cero.
Signup and view all the answers
La multiplicación de matrices es conmutativa, lo que significa que AB = BA para cualquier matriz A y B.
La multiplicación de matrices es conmutativa, lo que significa que AB = BA para cualquier matriz A y B.
Signup and view all the answers
Las operaciones elementales de filas pueden cambiar el conjunto solución de un sistema lineal.
Las operaciones elementales de filas pueden cambiar el conjunto solución de un sistema lineal.
Signup and view all the answers
Una matriz ortogonal es aquella cuya transpuesta es igual a su inversa.
Una matriz ortogonal es aquella cuya transpuesta es igual a su inversa.
Signup and view all the answers
La multiplicación de matrices no es conmutativa; es decir, en general, $AB
eq BA$.
La multiplicación de matrices no es conmutativa; es decir, en general, $AB eq BA$.
Signup and view all the answers
Una matriz es invertible si y solo si su determinante es igual a cero.
Una matriz es invertible si y solo si su determinante es igual a cero.
Signup and view all the answers
El traspuesto de la multiplicación de dos matrices cumple la propiedad $(AB)^T = A^T B^T$.
El traspuesto de la multiplicación de dos matrices cumple la propiedad $(AB)^T = A^T B^T$.
Signup and view all the answers
Study Notes
Sistemas de ecuaciones lineales
- Un sistema de ecuaciones lineales puede tener varias incógnitas, representando las variables en forma de ecuaciones.
- Definición de solución: es un conjunto de números reales (s1, s2, ..., sn) que satisface las ecuaciones del sistema.
- El conjunto solución de un sistema se representa como S; si no hay solución, S es vacío (∅).
Sistemas equivalentes
- Dos sistemas son equivalentes si tienen el mismo conjunto de soluciones.
- Esto es importante para facilitar la resolución de sistemas de ecuaciones.
Notación matricial
- Un sistema lineal se puede expresar en forma matricial con matrices A (coeficientes), X (incógnitas) y B (resultados).
- La forma general del sistema en notación matricial es A·X = B, donde A es una matriz mx(n+1).
- La matriz aumentada incluye las columnas de coeficientes y los términos independientes.
Clasificación de sistemas de ecuaciones
- Un sistema se considera "compatible" si tiene al menos una solución.
- Compatible determinado: solución única.
- Compatible indeterminado: infinitas soluciones.
- Un sistema es "incompatible" si no tiene solución.
- Los sistemas homogéneos siempre tienen la forma Ax = 0, que garantiza al menos la solución trivial (0, 0, ..., 0).
Compatibilidad de sistemas homogéneos
- Según el Teorema de Rouché-Frobenius, todos los sistemas homogéneos son compatibles.
- La raíz fundamental es que el rango de la matriz de coeficientes r(A) es igual al rango de la matriz aumentada r(A°).
- Si r(A) = n (número de incógnitas), el sistema es compatible determinado con solución única.
- Si r(A) < n, el sistema es compatible indeterminado con infinitas soluciones.
Método de eliminación de Gauss
- Se utiliza para resolver sistemas de ecuaciones lineales mediante la transformación del sistema original en uno equivalente más sencillo.
- La equivalencia de dos sistemas se verifica a través de sus matrices orladas, facilitando la resolución al convertirlas en una forma escalonada.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Related Documents
Description
Este cuestionario se centra en la resolución de sistemas de ecuaciones lineales con dos incógnitas. Aprenderás a identificar soluciones y a trabajar con diferentes ecuaciones. Se proporcionarán ejemplos para practicar y mejorar tus habilidades en álgebra.