Set Operasi: Interseksi
5 Questions
1 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Apa maksud operasiIntersection dalam teori set?

  • Menghapus elemen yang sama dalam set A dan B
  • Menggabungkan semua elemen dalam set A dan B
  • Mencari elemen yang unik dalam set A dan B
  • Mencari elemen yang sama dalam set A dan B (correct)

Apakah sifat komutatif dalam operasi intersection?

  • A ∩ B = B ∩ A (correct)
  • A ∩ B < B ∩ A
  • A ∩ B ≠ B ∩ A
  • A ∩ B > B ∩ A

Jika A = {1, 2, 3} dan B = {2, 3, 4}, maka A ∩ B adalah?

  • {1, 4}
  • {1, 2, 3, 4}
  • {3, 4}
  • {2, 3} (correct)

Apakah kepentingan operasi intersection dalam aplikasi sebenar?

<p>Mencari elemen yang sama dalam dua set (C)</p> Signup and view all the answers

Apakah sifat pengagihan dalam operasi intersection?

<p>A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (D)</p> Signup and view all the answers

Study Notes

Operation Set: Intersection

Definition:

The intersection of two sets, denoted as A ∩ B, is the set of all elements that are common to both sets A and B.

Notation:

A ∩ B = {x | x ∈ A and x ∈ B}

Properties:

  1. Commutative Property: A ∩ B = B ∩ A
  2. Associative Property: (A ∩ B) ∩ C = A ∩ (B ∩ C)
  3. Distributive Property: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Examples:

  1. If A = {1, 2, 3} and B = {2, 3, 4}, then A ∩ B = {2, 3}
  2. If A = {a, b, c} and B = {c, d, e}, then A ∩ B = {c}

Importance:

The intersection operation is used to find the common elements between two sets, which is essential in various mathematical and real-world applications, such as:

  • Data analysis: finding common characteristics between two datasets
  • Set theory: studying the properties of sets and their relationships
  • Logic: identifying common truths between two statements

Operasi Set: Pertemuan

Definisi

  • Pertemuan dua set, dilambangkan sebagai A ∩ B, adalah set semua elemen yangcommon kepada kedua-dua set A dan B.

Notasi

  • A ∩ B = {x | x ∈ A dan x ∈ B}

Sifat-Sifat

Sifat Komutatif

  • A ∩ B = B ∩ A

Sifat Asosiatif

  • (A ∩ B) ∩ C = A ∩ (B ∩ C)

Sifat Distributif

  • A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Contoh

  • Jika A = {1, 2, 3} dan B = {2, 3, 4}, maka A ∩ B = {2, 3}
  • Jika A = {a, b, c} dan B = {c, d, e}, maka A ∩ B = {c}

Kepentingan

  • operasi pertemuan digunakan untuk mencari elemen yang sama di antara dua set, yang penting dalam pelbagai aplikasi matematik dan dunia sebenar, seperti:
  • Analisis data: mencari ciri-ciri yang sama di antara dua set data
    • Teori set: kajian sifat-sifat set dan hubungan mereka
    • Logik: mengenalpasti kebenaran yang sama di antara dua pernyataan

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Kuiz ini menguji kefahaman anda tentang konsep interseksi dalam set teori. Anda akan diuji tentang definisi, notasi, sifat dan contoh interseksi.

More Like This

Set Theory: Intersection of Sets
5 questions
Set Theory: Intersection of Sets
5 questions

Set Theory: Intersection of Sets

WarmerLeaningTowerOfPisa avatar
WarmerLeaningTowerOfPisa
Use Quizgecko on...
Browser
Browser