Remote Sensing - Image Classification
17 Questions
100 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is Image Classification?

  • Classifying pixels based on user-defined themes
  • Grouping of similar pixels based on spectral characters (correct)
  • Classifying pixels without human interaction
  • Assigning pixels based on textural information
  • What are Point/Spectral Classifiers used for?

    Classifies based on spectral patterns recognized

    What improves the accuracy of Neighbourhood/Spatial Classifiers?

    Higher accuracy than Spectral Classifiers

    What does Feature Space represent?

    <p>Plotting reflectances as x;y scatter plots</p> Signup and view all the answers

    What defines Informational Classes?

    <p>Classes defined by and of interest to the user</p> Signup and view all the answers

    What are Spectral Classes?

    <p>Groups of uniform pixels</p> Signup and view all the answers

    What characterizes Unsupervised Classification?

    <p>Minimal user interaction during the classification process</p> Signup and view all the answers

    What is ISODATA?

    <p>Iterative Self-Organising Data Analysis Technique</p> Signup and view all the answers

    What is Supervised Classification?

    <p>Operator defines classes during the training process</p> Signup and view all the answers

    What are Training Areas?

    <p>Sample sites representative of clusters collected during training</p> Signup and view all the answers

    What is a Parametric Signature?

    <p>Signature based on statistical parameters</p> Signup and view all the answers

    Describe a Nonparametric Signature.

    <p>Signature based on Area Of Interest defined in feature space</p> Signup and view all the answers

    What is the Parallelepiped Classifier?

    <p>Simplest classifier that labels pixels according to defined classes</p> Signup and view all the answers

    What does Minimum Distance to Mean calculate?

    <p>Calculates the Euclidean distances of training data to form cluster centers</p> Signup and view all the answers

    What is the Mahalanobis Distance?

    <p>Calculates distance from the mean by weighting the differences</p> Signup and view all the answers

    How does Maximum Likelihood function?

    <p>Estimates means and variances of classes to assign pixels based on probabilities</p> Signup and view all the answers

    What is Hybrid Classification?

    <p>Use output from unsupervised to train supervised classification</p> Signup and view all the answers

    Study Notes

    Image Classification

    • Assigns pixels to specific classes or themes based on spectral characteristics.
    • Groups similar pixels by analyzing their reflectance patterns across different spectral bands.

    Point / Spectral Classifiers

    • Classify individual pixels based on recognized spectral patterns.
    • Limited in identifying relationships distinguishable to the human eye.

    Neighbourhood / Spatial Classifiers

    • Utilize both spectral and textural information for classification.
    • Provide higher accuracy compared to spectral classifiers.

    Feature Space

    • Reflectances are plotted as x; y scatter plots.
    • Distances between classes in feature space are crucial for distinguishing classes.

    Informational Classes

    • User-defined classes based on specific interests and objectives.
    • Characteristics such as brightness, topography, color, and texture are considered.

    Spectral Classes

    • Comprised of uniform pixels based on brightness across multiple channels.
    • Spectral classes contribute to the formation of informational classes.

    Unsupervised Classification

    • Minimal user interaction; spectral classes are grouped initially.
    • Algorithms like K-Means and ISODATA identify natural groupings.
    • Analyst defines the number of classes and separation, reducing human error risks.
    • Cannot align with informational classes; requires additional processing.

    ISODATA

    • An iterative self-organizing data analysis technique for unsupervised classification.
    • Pixels are grouped around centroids and reclassified based on new centroid positions.
    • Iterations can be limited or terminated upon classification stability.

    Supervised Classification

    • Operator defines classes during a training process, relying on spectral information.
    • Each pixel is assigned to the class it most closely resembles.
    • Can identify classification errors but may lack representative training areas.

    Training Areas

    • Representative sample sites used for comparison against classification algorithms.
    • Recommend using over 100 pixels and 5-10 training areas per class.
    • Need for uniformity and homogeneity in training areas.

    Parametric Signature

    • Based on statistical parameters of training areas (min, max, mean).
    • Decision Rules include Mahalanobis Distance, Minimum Distance to Mean, and Maximum Likelihood.

    Nonparametric Signature

    • Based on defined Areas of Interest in feature space.
    • Pixels assigned based on their position within the feature space using Parallelepiped decision rules.

    Parallelepiped

    • Simplistic classifier that assigns pixels to defined classes based on training data.
    • Unclassified pixels are labeled as "unknown," leading to potential class overlaps.

    Minimum Distance to Mean

    • Measures Euclidean distances from training data to cluster centers (mean).
    • Pixels assigned to the nearest cluster but may overlook variability, risking overlap.

    Mahalanobis Distance

    • Accounts for variations among samples by applying a co-variance matrix.
    • Estimates distances from the mean while assuming normal distribution; more computation-intensive.

    Maximum Likelihood

    • Utilizes training data to estimate means and variances for probability assignments.
    • Pixels classified in line with the highest probability; assumes equal class probabilities.

    Hybrid Classification

    • Combines outputs from unsupervised to train supervised classification models.
    • An approach to leverage advantages of both classification types for improved accuracy.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Explore the essential concepts of image classification in remote sensing through this set of flashcards. Learn about assigning pixels to classes and the use of spectral classifiers to identify pixel patterns. Perfect for students and professionals looking to enhance their knowledge in this critical area of environmental science.

    More Like This

    Use Quizgecko on...
    Browser
    Browser