Redes de Regulação Transcricional e Sinalização Celular
45 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

As bordas direcionadas em redes de regulação transcricional correspondem a interações que afetam produtos de genes através de interações proteína-RNA.

False

O fator de transcrição X regula a taxa de produção da proteína Y ao se ligar a regiões regulatórias do gene Y.

True

A comunicação celular é independente de erros em sinalização e não causa doenças.

False

O fator de crescimento transformador beta (TGF-β) é uma proteína responsável apenas pela diferenciação celular e não tem efeito sobre a proliferação celular.

<p>False</p> Signup and view all the answers

As redes de sinalização celular governam atividades celulares básicas como desenvolvimento e reparo, mas não estão relacionadas à imunidade.

<p>False</p> Signup and view all the answers

A distribuição de grau em uma rede é definida como a probabilidade de que um nó tenha grau k.

<p>True</p> Signup and view all the answers

Redes com distribuições de grau de lei de potência são chamadas de redes aleatórias.

<p>False</p> Signup and view all the answers

A média do grau pode sempre ser um bom indicador da estrutura global de uma rede.

<p>False</p> Signup and view all the answers

Nós de alto grau em uma rede desassortativa tendem a interagir com outros nós de alto grau.

<p>False</p> Signup and view all the answers

A distribuição de grau de uma rede é sempre uma distribuição normal.

<p>False</p> Signup and view all the answers

A altura média da rede é um parâmetro global que pode descrever a estrutura de uma rede.

<p>True</p> Signup and view all the answers

A mistura assortativa é um fenômeno onde nós de similar grau tendem a se conectar mais frequentemente.

<p>True</p> Signup and view all the answers

Um exemplo de distribuição de grau que não é significativa em termos de média é a distribuição de Poisson.

<p>True</p> Signup and view all the answers

Nos gráficos bipartidos, nós correspondem apenas a enzimas, enquanto as arestas dirigidas correspondem a reações metabólicas.

<p>False</p> Signup and view all the answers

O objetivo principal do algoritmo é minimizar o número de alvos explicados, λ2.

<p>False</p> Signup and view all the answers

As redes metabólicas fornecem uma visão completa do metabolismo celular e do fluxo de materiais na célula.

<p>True</p> Signup and view all the answers

Análises de redes metabólicas podem ajudar a controlar infecções de patógenos ao entender as diferenças metabólicas entre humanos e patógenos.

<p>True</p> Signup and view all the answers

O algoritmo ganancioso começa com todos os proteínas inativas no ponto de tempo 0.

<p>False</p> Signup and view all the answers

Os dados disponíveis sobre redes metabólicas são exclusivamente experimentais e não envolvem sequências genéticas.

<p>False</p> Signup and view all the answers

A técnica de busca tabuada mantém um buffer com caminhos anteriores que levam a máximos locais.

<p>True</p> Signup and view all the answers

O KEGG (Kyoto Encyclopedia of Genes and Genomes) contém informações úteis tanto para eucariontes quanto para procariontes.

<p>True</p> Signup and view all the answers

A validação in silico envolve a inserção de uma biblioteca de siRNAs para todos os genes humanos em células, com cerca de 20 mil espécimes.

<p>True</p> Signup and view all the answers

A regulação transcripcional não tem impacto na diferenciação celular.

<p>False</p> Signup and view all the answers

A busca em profundidade é uma das variáveis independentes utilizadas na validação in silico.

<p>True</p> Signup and view all the answers

O algoritmo Simulated Annealing aceita com alta probabilidade mudanças para estados de energia mais baixa.

<p>False</p> Signup and view all the answers

A rede metabólica se limita ao metabolismo da glicólise e não abrange outros caminhos metabólicos.

<p>False</p> Signup and view all the answers

BioCyc, EcoCyc e MetaCyc fornecem informações sobre espécies específicas dentro das redes metabólicas.

<p>True</p> Signup and view all the answers

As redes biológicas não são utilizadas para entender interações entre componentes celulares.

<p>False</p> Signup and view all the answers

Todos os três estudos disponíveis usados na meta-análise identificaram a mesma quantidade de proteínas ativas.

<p>False</p> Signup and view all the answers

Os metabolitos incluem apenas grandes moléculas como proteínas e ácidos nucléicos.

<p>False</p> Signup and view all the answers

As restrições de tempo são consideradas como variáveis dependentes no processo de validação.

<p>False</p> Signup and view all the answers

Os caminhos metabólicos são sequências de reações bioquímicas que sempre resultam na formação de energia.

<p>False</p> Signup and view all the answers

A regulação interna que mantém um organismo em homeostase é crucial para sua sobrevivência.

<p>True</p> Signup and view all the answers

As redes de conexão sináptica neuronal são um tipo de rede biológica importante para o estudo do cérebro.

<p>True</p> Signup and view all the answers

A rede de interação proteína-proteína (PPI) é um exemplo de rede biológica que analisa as relações entre proteínas.

<p>True</p> Signup and view all the answers

A síntese de penicilina é um exemplo de um caminho metabólico conhecido.

<p>True</p> Signup and view all the answers

As redes ecológicas de teia alimentar representam interações entre diferentes espécies em um ecossistema.

<p>True</p> Signup and view all the answers

O coeficiente de agrupamento médio, C, de uma rede é a média de Cv sobre todos os nós v pertencentes a V.

<p>True</p> Signup and view all the answers

O espectro de agrupamento, C(k), representa a distribuição dos coeficientes de agrupamento médio apenas para nós de grau 1 na rede.

<p>False</p> Signup and view all the answers

Em uma rede, um nó de grau 0 ou 1 terá um coeficiente de agrupamento Cv igual a 1.

<p>False</p> Signup and view all the answers

A distância média entre dois nós em uma rede é chamada de diâmetro médio da rede.

<p>True</p> Signup and view all the answers

O coeficiente de agrupamento Cv de um nó v pode variar entre 0 e 2.

<p>False</p> Signup and view all the answers

Os hubs de 'party' e 'date' são exemplos de distribuição de grau escalonada.

<p>True</p> Signup and view all the answers

A média do grau dos vizinhos é um critério utilizado para medir a robustez estrutural de uma rede.

<p>True</p> Signup and view all the answers

A escolha da amostra pode introduzir viés nos dados de coleta relacionados à análise de redes.

<p>True</p> Signup and view all the answers

Study Notes

Bioinformatics Overview

  • Bioinformatics is a field that uses computational tools and techniques to analyze biological data. Its applications are broad, including computational biology, systems biology, and the study of biological networks.

Goals for This Module (Systems Biology)

  • Focuses on theoretical properties of biological networks.
  • Aims to discover patterns and signatures within biological networks.
  • Includes forecasting and simulation of biological networks.
  • Covers time series network reconstruction.

Challenges in Computational Biology

  • Addresses challenges ranging from genome assembly and regulatory motif discovery to comparative genomics, gene expression analysis, protein network analysis, regulatory network inference, and the analysis of emerging network properties.
  • This includes techniques like gene finding, sequence alignment, database lookups, and protein structure prediction.

Biological Networks

  • Networks represent many real-world phenomena, including the World Wide Web, the Internet, and airline routes.

Central Dogma (Revisted)

  • The standard information flow is DNA to RNA to Protein.
  • Enzymatic and regulatory proteins are involved in gene regulation.
  • Processes are influenced by regulatory and external signals.

Systems Biology

  • Aims for a systems-level understanding of biological systems.
  • Analyzes component interactions and emergent behavior.
  • Emphasizes learning about biology via interactions networks' topology/wiring/structure.

Networks Model Real-World Phenomena

  • Networks are fundamental models used for many diverse areas, including the World Wide Web and the Internet.

Metabolic Networks

  • Used for studying and modeling metabolism.
  • Biochemical reactions allow organisms to respond to environment, grow, reproduce, and maintain structure.
  • Homeostasis relies on these internal regulations.

Metabolic Pathways

  • Successive biochemical reactions perform specific metabolic functions. Examples include glycolysis and penicillin synthesis.
  • Enzymes are proteins that catalyze (accelerate) chemical reactions that convert metabolites.

Metabolic Networks: Example: Glycolysis Pathway

  • A portion of the glycolysis pathway was diagrammed showing the reactants, metabolites, and reactions involved.

Metabolic Networks: All Metabolic Pathways Together

  • Complete view of cellular metabolism and material/mass flow in a cell.
  • Essential for cell function: digesting substrates, generating energy, and synthesizing necessary components for growth and survival.
  • Useful for various applications, such as treating metabolic diseases and controlling pathogens.

Metabolic Networks: Data Construction and Availability

  • Metabolic networks are partially constructed by experimental data and partially inferred by genetic sequence homology.
  • Large-scale databases, such as KEGG (Kyoto Encyclopedia of Genes and Genomes) provide comprehensive information on genes, proteins, reactions, and pathways for various organisms, from bacteria to humans.

Biological Networks: Intra-Cellular Networks

  • Different types of cellular networks were covered, including transcription regulation networks, protein structure networks, metabolic networks (protein-protein interaction (PPI) networks), and cell signaling networks.

Biological Networks: Other Biological Networks

  • Neuronal synaptic connection networks
  • Brain functional networks
  • Ecological food webs
  • Phylogenetic networks
  • Correlation networks (e.g., gene co-expression)
  • Disease-disease gene association networks
  • Drug-drug target networks

Biological Networks:Abstraction

  • Visual representations of biological networks, such as transcriptional regulation networks, neuronal synaptic connection networks, and ecological food webs.
  • Key concepts like interactions and relationships are shown through diagrams.

Transcriptional Regulation Networks

  • Models the regulation of gene expression.
  • Recall: Gene --> mRNA --> Protein
  • Controlling a cell's structure and function, such as during cellular differentiation and morphogenesis.

Transcriptional Regulation Networks: Interactions

  • DNA sequences transcribed to mRNA and proteins via specific interactions.
  • Transcription factors (proteins from genes) regulate the expression rate (stimulation or repression) of other proteins by binding to certain DNA segments.

Transcriptional Regulation Networks: E. coli Network

  • Diagram showing the E. coli Transcriptional Regulatory Network. Diagram highlighting different components like transcription factors and regulated genes.

Cell Signaling Networks

  • Complex communication systems regulating fundamental cellular processes (development, repair, immunity).
  • Errors in signaling can lead to serious diseases like cancer, autoimmune diseases, and diabetes.
  • Example: Transforming growth factor beta (TGF-B) controls functions such as proliferation and differentiation in most cells.

Cell Signaling Networks: Signaling Pathways

  • Ordered sequences of signal transduction reactions forming the cell signaling network.
  • These reactions involve proteins and chemical modifications (like phosphorylation by protein kinases).

Protein-Protein Interaction (PPI) Networks

  • Protein-protein interactions (PPIs) are physical interactions between proteins.
  • Crucial for cellular structure and functions: signal transduction, cellular processes, disease, and drug development.

Protein-Protein Interaction (PPI) Networks: Methods to detect PPIs

  • Biological and computational methods have been used to identify protein-protein interactions in a wide range of contexts.
  • Methods like Yeast 2-hybrid (Y2H) screening, mass spectrometry of purified complexes, correlated mRNA expression profiles, genetic interactions, and in silico computational methods.

Protein-Protein Interaction (PPI) Networks: Biases in PPI networks

  • Biases in PPI networks include loss of spatial information, temporal information, information about experimental conditions, strength of interactions, and the number of experiments verifying the interactions.
  • Crucial for understanding the proteome and interactome in an organism.

Protein-Protein Interaction (PPI) Networks: Quality and Completeness of PPI Data

  • PPI data sets from different methodologies are often complementary.
  • Even data from the same technique sometimes complements and improves quality.

Different Network Types:Summary

  • Summary that combines several network types within a single illustration; visualization showing different biological components, including Proteins, Metabolites, and various processes involved in Gene Regulation, Cell signaling, and PPIs.

Network Properties

  • Network analysis is used in computational biology. Key properties include the degree distribution (frequency of node degrees), average clustering coefficient (likelihood of connected neighbors), clustering spectrum (degree-wise distribution of average clustering values), average diameter (average shortest path lengths between all pairs of nodes), and shortest path length spectrum (distribution of shortest path lengths), and centralities (node or edge significance in the network).

Network Properties: Degree Distribution

  • Degree of a node represents the number of edges leading into that node.
  • Average degree in a network is the mean of the degrees over all nodes.
  • Distributions might not be uniform and can be skewed, necessitating consideration of the overall distribution.

Network Properties: Degree Distribution (continued)

  • P(k) is the percentage of nodes with degree k in a network.
  • An illustration is given of a graph showing the relationship between (log) P(k) and (log) degree k.
  • Heavy-tailed power-law distributions indicate scale-free networks.

Network Properties: Degree Distribution(Continued)

  • Examples illustrating cases where average degree is not representative, and when it is.
  • Use of graphs with the same number of vertices and edges but drastically different topologies.

Research Debates

  • Assortative (favored connections between similar nodes) vs. disassortative (between dissimilar) mixing of degrees. Important for analysis of high-degree nodes.
  • Structural robustness/attack tolerance. Robustness of networks to disruptions were considered.
  • Scale-free degree distribution. Analysis of network topological structure.
  • High degree nodes, potentially crucial for biological function (essential genes).

Network Properties: Average Clustering Coefficient (Part b)

  • Definitions, example calculation, and importance of this coefficient in network analysis.
  • Clustering coefficient Cv of a given node: the probability that neighbors are also connected to each other. The higher, the stronger the community structure in a specific node area.

Network Properties: Clustering Spectrum (Part c)

  • The clustering spectrum C(k) is the distribution of average clustering coefficients for all nodes of degree k across the entire network.

Network Properties: Average Diameter (Part d)

  • Definition: The shortest path distance between two nodes.
  • Average network diameter is average shortest path over all node pairs.

Network Properties: Spectrum of Shortest Path Lengths (Part e)

  • Definition: S(d) is the proportion of node pairs (u,v) with a shortest path length equal to d.
  • This spectrum displays the distribution of distances present in the network.

Network Properties: Node Centralities (Parts f and g)

  • Definitions of different centrality measures (degree, closeness, betweenness, eccentricity, subgraph, and eigenvector).
  • Significance of these measures: ranking nodes according to their "topological importance."
  • Examples of these measures in practical and conceptual contexts.
  • Visual representation of these metrics using software packages like Visone and CentiBiN.

Reconstruction of Time Series

  • Methods used currently do not capture early versus late changes in gene/protein expression well.
  • New reconstruction methods are crucial to distinguish different stages.
  • The new reconstruction method focuses on time series data from gene expression and host proteins' interaction data. Aiming at uncovering signaling pathway responses (over short-time).

Motivation of Time Series Reconstruction

  • Reconstructing signaling and regulatory responses.
  • Hypothesis: using time-series data allows inference of pathways responsible for changes in gene expression.
  • A cell in a stationary state is briefly disturbed by an external stimuli (virus/bacteria), triggering responses.
  • The method aims to understand and discover the response mechanisms.

Input - Output Hidden Markov Model (Bengio1995)

  • Explains the model structure, methodology, and the factors considered in a dynamic analysis. Provides a way to model the time series data.

Major Limitations of Previous Methods

  • Scalability is a major challenge.
  • Handling of many proteins is problematic due to the very large number of possible pathways.

Proposed Solution

  • Filter the search space using heuristics/domain knowledge.
  • Employ Integer Programming (IP) to identify optimal pathways.
  • Select pathways that well account for the observed expression patterns.

Material and Methods: Information used

  • Details on RNA expression profiling (for HIV infection over 24 hours).
  • Protein-DNA interactions in the protein interaction network, used in the models.
  • Information on time series.

Finding Candidate Pathways: Methodology

  • Dividing the time series into phases.
  • Isolating pertinent genes from time series data.
  • Selecting a set of acyclic pathways (from candidate proteins and targets in each phase).
  • Enforcing constraints based on protein-DNA interactions and previous-phase targets influencing subsequent phases.

Integer Programming 101

  • Background information about Integer Programming (IP).
  • Explains mathematical optimization and restriction of variables to integers.

IP Formulation: Detailed Components

  • Defines variables and sets relevant for mathematical modeling of pathways, using Boolean logic.
  • Specifies an objective function for path selection and optimization.

Search for Optimal Solutions

  • Descriptions of the search algorithms (Greedy and MetaHeuristic).
  • How local searches and simulated annealing assist in finding optimal pathways.

Nuts and Bolts (Variables)

  • Variables for the algorithm/method, detailing the independent (input) and dependent (output) data, needed to specify the methods' implementation

In silico Validation

  • Details on using siRNA screenhits for validation.
  • Inclusion of information on a meta-analysis used to restrict the validation to a common subset of the proteins (between models and experiments)
  • Validation through overlap with Reactome HIV pathways database. A key validation step involving pathway knowledge databases.

Results - Path Filtering, Results - IP

  • Tables with results of the pathway filtering and IP methods.

Comparison Methods and Overlap, Results comparison

  • Comparative analysis of methods against the baseline.
  • Tables on overalp of methods and Reactome pathway hits, with p-values for statistical significance.

TimePath Visual Representations(Part 1 & 2)

  • Visualizations (through a diagram, and an example video) of a dynamic network generated and analyzed. Visualizing network dynamics over time by TimePath methodology.

Experimental validation: Results (Tables and graphs)

  • Presenting the experimental results (target proteins, inhibitors, and phase-specific impacts) and the visualization of experimental results using graphs and tables.

Final Remarks

  • Conclusion summarizing TimePath methodology, how it differs from other methods, and highlighting its advantages including the shorter time scale and better resolution.
  • Discussing experimental validations, conclusions, and the significance of these results.

Acknowledgments

  • Acknowledgement of relevant researchers/resources for the information/research, and the sources used in the study material.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

Bioinformatics - CAP5 PDF

Description

Este quiz aborda as interações entre fatores de transcrição e produtos genéticos dentro das redes de regulação transcricional. Ele explora conceitos de sinalização celular, distribuição de grau e redes aleatórias. Teste seus conhecimentos sobre como essas redes influenciam processos celulares e a comunicação entre células.

More Like This

Protein Balance and Transcription Regulation Quiz
12 questions
SARMs and Ion Channels Overview
10 questions
Cell stuff-6
20 questions

Cell stuff-6

DauntlessPoltergeist avatar
DauntlessPoltergeist
Use Quizgecko on...
Browser
Browser