Real Numbers and Logic
5 Questions
2 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Is the sum of two irrational numbers always irrational? Provide a counterexample to support your answer.

No, the sum of two irrational numbers is not always irrational. A counterexample is √2 + (-√2) = 0, which is a rational number.

Prove that the product of two rational numbers is always rational.

Let a and b be two rational numbers. Then, a = p/q and b = r/s, where p, q, r, and s are integers and q, s ≠ 0. The product ab = (p/q) × (r/s) = (pr)/(qs), which is a rational number.

If p → q is true, and q is false, what can be concluded about p?

If p → q is true, and q is false, then p must be false. This is because if p were true, then p → q would imply that q is true, which contradicts the given fact that q is false.

Is the statement 'All real numbers are rational numbers' true or false? Justify your answer.

<p>The statement is false. A counterexample is π, which is a real number but not a rational number.</p> Signup and view all the answers

If it is not true that 'All rectangle are squares', what can be concluded?

<p>If it is not true that 'All rectangles are squares', then there exists at least one rectangle that is not a square.</p> Signup and view all the answers

Study Notes

Irrational and Rational Numbers

  • The sum of two irrational numbers is not always irrational.
  • A counterexample to this statement is the sum of √2 and -√2, which equals 0, a rational number.

Rational Number Product

  • The product of two rational numbers is always rational.
  • This is because the product of two fractions with integer numerators and denominators will always result in another fraction with integer numerators and denominators.

Conditional Statements

  • If p → q is true, and q is false, then p must also be false.
  • This is because the conditional statement p → q implies that if p is true, then q must also be true; if q is false, then p cannot be true.

Real and Rational Numbers

  • The statement 'All real numbers are rational numbers' is false.
  • This is because there are real numbers that are not rational, such as π and e, which cannot be expressed as fractions.

Rectangle and Square

  • If it is not true that 'All rectangles are squares', then it can be concluded that there exist rectangles that are not squares.
  • This is because the statement implies that not all rectangles have the additional property of having all sides of equal length, which defines a square.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Test your understanding of real numbers and logical reasoning with these questions on irrational and rational numbers, and logical conclusions.

More Like This

Use Quizgecko on...
Browser
Browser