Rational and Irrational Numbers Quiz
12 Questions
2 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Which of the following numbers is a rational number?

  • 0.01001000100001... (correct)
  • 3.141592654...
  • 1.4142135...
  • 214.121122111222...
  • What type of number is the value of Pi (π)?

  • Irrational (correct)
  • Whole number
  • Rational
  • Recurring decimal
  • How does the text prove that 2 is an irrational number?

  • By dividing 2 by a prime number
  • By showing that 2 is a whole number
  • By taking the square root of 2
  • By squaring both sides of the equation 2 = p/q (correct)
  • In the proof that 2 is irrational, what does the text assume about p/q?

    <p>p/q is not in its lowest form</p> Signup and view all the answers

    What would happen if 3 was assumed to be rational?

    <p>It would lead to a contradiction</p> Signup and view all the answers

    What type of decimal is 0.142857142857... according to the text?

    <p>Recurring</p> Signup and view all the answers

    What is the defining characteristic of a rational number?

    <p>Can be put in the form p/q where p, q are integers and q is not equal to 0</p> Signup and view all the answers

    Which of the following is an example of a terminating decimal?

    <p>0.125</p> Signup and view all the answers

    What type of decimal can always be converted into a common fraction?

    <p>Terminating decimal</p> Signup and view all the answers

    Which of the following is a characteristic of irrational numbers?

    <p>Cannot be expressed as a fraction</p> Signup and view all the answers

    What is the defining characteristic of a recurring decimal?

    <p>Has one or more repeating digits indefinitely</p> Signup and view all the answers

    Why do non-terminating, non-recurring decimals represent irrational numbers?

    <p>Because they cannot be converted into common fractions</p> Signup and view all the answers

    Study Notes

    Rational Numbers

    • A rational number can be expressed as a fraction of two integers, where the denominator is not zero.
    • Examples of rational numbers include fractions like 1/2 and whole numbers like 3.

    Value of Pi (π)

    • Pi (π) is classified as an irrational number because it cannot be expressed as a simple fraction.

    Proving 2 as an Irrational Number

    • The proof of 2 being irrational typically utilizes contradiction, demonstrating that if 2 were rational, it would lead to an impossible situation.

    Assumptions in Proof

    • In proofs, p/q is often assumed to represent the simplest form of a rational number expression of 2.

    Assuming 3 as Rational

    • If 3 were incorrectly assumed to be rational, it could lead to contradictions similar to those found in proofs regarding other irrational numbers.

    Characteristics of 0.142857142857…

    • The decimal 0.142857142857… is a recurring decimal as it repeats the sequence "142857" indefinitely.

    Defining Characteristics of Rational Numbers

    • The defining characteristic is the ability to be expressed as a fraction, hence exhibiting a finite or repeating decimal form.

    Example of a Terminating Decimal

    • An example of a terminating decimal is 0.75, which has a finite number of digits after the decimal point.

    Converting Decimals into Fractions

    • Any decimal that terminates or is recurring can be converted into a common fraction.

    Characteristics of Irrational Numbers

    • Irrational numbers cannot be expressed as fractions; they may represent non-recurring, non-terminating decimals.

    Defining Characteristic of a Recurring Decimal

    • A recurring decimal has a digit or group of digits that repeat infinitely after the decimal point, like 0.666...

    Non-Terminating, Non-Recurring Decimals

    • Such decimals represent irrational numbers because they cannot be precisely expressed as fractions and do not exhibit repeating patterns.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Test your knowledge on rational and irrational numbers, including their definitions and decimal representations. Learn to differentiate between numbers that can be expressed as fractions and those that cannot.

    More Like This

    Use Quizgecko on...
    Browser
    Browser