Probability Distribution Quiz
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Wanem samting wea i faenem probability long Geo(0.5)?

  • 0.4
  • 0.1
  • 0.5 (correct)
  • 0.25

Ol samting wea i stap long graph bilong NB(10,0.2) i girifrem?

  • Probability i mas i ziro long 15 (correct)
  • Probability i stap long 0.10 (correct)
  • Probability i no inap long 0.2
  • Probability i kamap long 10

Wanem samting hem i no faenem long Poi(10)?

  • I no showem probabilti long 20
  • I no gat probability long 15
  • I no stap long 0
  • I no inap olgeta long 10 (correct)

Wanem type long probability distribution i no includem Exp(1)?

<p>Binomial (A)</p> Signup and view all the answers

Long ol Beta functions, wanem wan hem i high probability long 0.5?

<p>Beta(2,2) (D)</p> Signup and view all the answers

Flashcards

Geo(λ)

Hem wan distribution long statistik, we hem yusim blong lukluk long nomba blong ol event we i stap long wan spesifik taem long wan spesifik area. Hem save yusim blong lukluk long ol event we i stap random, olsem nomba blong ol ka we i pas long wan rod long wan spesifik taem.

NB(r, p)

Hem wan distribution long statistik, we bae hem yusim blong lukluk long nomba blong ol trial we i nid blong gat r success. Evri trial i gat wan probabeliti p blong gat success.

Poi(λ)

Hem wan distribution long statistik, we hem yusim blong lukluk long nomba blong ol event we i stap long wan spesifik taem. Hem save yusim blong lukluk long ol event we i stap random, olsem nomba blong ol ka we i pas long wan rod long wan spesifik taem.

Bin(n, p)

Hem wan distribution long statistik, we hem yusim blong lukluk long nomba blong ol success long n trial. Evri trial i gat wan probabeliti p blong gat success.

Signup and view all the flashcards

Exp(λ)

Hem wan distribution long statistik, we hem yusim blong lukluk long taem we i pas blong wan event i hapen. Hem save yusim blong lukluk long ol event we i stap random, olsem taem we i pas blong ol machine i brek daun.

Signup and view all the flashcards

Study Notes

Some Special Distributions

  •  Diskusi se distrik probabiliti blong ol sam spesel distribisen, olsem Binomial, Poisson, Gamma, Exponential, Chi-squared, Beta, mo Uniform.
  •  Olgeta distribisen ia i save help long explain ol difren variabili blong ol jeneral fenomen.
  •  Ol distrik ia i save folem difren paten.

Goals for this Chapter

  •  Binomial mo ol distribisen we i save kamaot long en.
  •  Poisson distribisen.
  •  Distribisen blong Gamma, Exponential, Chi-squared, Beta, mo Uniform.
  •  Normal distribisen.
  •  Bernoulli experiment: One blong tu outcome (success/failure), we let p be probabiliti blong success every trial.
  •  Example: male/female, or life or death, nondefective or defective.
  •  Binomial distribution: A sequence blong independent and identical Bernoulli trials, where p (probability of success) i same long every trial. Olsem, number of success out of n trials.

Section 2: The Poisson Distribution

  •  A good model for number of events that happen in space or time.
  •  Probability of two events in very small increment of space or time is zero.
  •  Useful for modeling number of events that occur per unit space or time.

Section 3: The Gamma, Exponential, Chi-squared, and Beta, Uniform Distributions

  •  Ol sam spesel distribisen blong continuous random variables.
  •  Ol jeneral fenomen na explain ol difren variabili blong ol skewed distributions, olsem time between failures or distance to shell impact.

Section 4: The Normal Distribution

  •  Normal distribisen i save yus long explain very important phenomenon.
  •  Natural phenomena save be normally distributed, olsem people height, IQ, wealth.
  •  A special case use blong the Normal is a Standard Normal to get rid of any kind of variance.

Geometric Distribution

  •  Independent trials, but only two outcomes are possible (success/failure).
  •  X is the number of failures before the first success.
  •  Number of trials before the first success.

Negative Binomial Distribution

  •  Two outcomes only (success/failure).
  •  Constant probability of success is p.
  •  X is the number of failures until the rth success (r > 1).

Hypergeometric Distribution

  •  Finite population.
  •  Sampling without replacement.

Mean, Variance, and mgf of Distribution

  •  Formula long calculate mean, variance, and moment generating functions (mgfs) blong every distribution.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

Description

Hemia wan quiz abaot probability distribution. Yu go long samting olsem geometric, negative binomial, poisson, mo beta functions. Findaem long ol question, wanem samting i faenem mo nao wanem i no faenem long ol specific distributions.

More Like This

Probability Distribution Notes
11 questions
Probability Distributions Quiz
21 questions

Probability Distributions Quiz

MarvellousAntigorite6041 avatar
MarvellousAntigorite6041
Use Quizgecko on...
Browser
Browser