Probabilità e Variabili Casuali
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

In un esperimento di lancio di 5 dadi, quanti elementi compongono lo spazio campionario?

  • 30
  • 5
  • Non è determinabile
  • 6^5 (correct)
  • Se si estraggono senza ripetizione 3 palline da un'urna con 10 palline numerate, quanti elementi contiene lo spazio campionario?

  • 10 * 9 * 8 (correct)
  • 3
  • Infiniti
  • 10
  • Quale delle seguenti affermazioni è sempre vera riguardo a due eventi A e B, composti da almeno un evento elementare?

  • L'unione A ∪ B è sempre contenuta nell'intersezione A ∩ B.
  • L'unione A ∪ B può coincidere con l'evento impossibile.
  • L'evento A è sempre contenuto nell'evento B.
  • L'intersezione A ∩ B non può mai essere l'evento impossibile. (correct)
  • Dati due eventi A e B con probabilità non nulla, che relazione sussiste tra P(A|B) e P(B|A)?

    <p>P(A|B) può essere maggiore, uguale o minore di P(B|A), a seconda dei valori di P(A) e P(B). (D)</p> Signup and view all the answers

    Siano A e B due eventi tali che P(A) = 0.4, P(B) = 0.5 e P(A∩B) = 0.2, qual è la probabilità P(A∪B)?

    <p>0.7 (C)</p> Signup and view all the answers

    Study Notes

    Domanda a risposta multipla - Esperimenti casuali

    • Esperimento a 5 dadi: Lo spazio campionario ha 6⁵ elementi.
    • Estrazione senza ripetizione di 3 palline: Lo spazio campionario ha 10x9x8 elementi.
    • Unione di eventi: L'unione di due eventi A e B può coincidere con lo spazio campionario. L'intersezione di due eventi non è mai l'evento impossibile.
    • Probabilità condizionata: Se A è un sottoinsieme di B, la probabilità condizionata P(A|B) è maggiore o uguale a P(A). P(A∩B) è sempre maggiore di 0.

    Variabili casuali discrete

    • Caratteristiche: Una variabile casuale discreta assume un numero finito di valori. La varianza può essere calcolata conoscendo E(X) e E(X²). Il valore atteso non può essere negativo.
    • Funzione di ripartizione: È monotona crescente e si rappresenta con una spezzata. Permette di calcolare P(X>x).

    Variabili casuali continue

    • Standardizzazione: Se Z è una variabile casuale standardizzata, la sua distribuzione è sempre normale e E(Z²) = 1. Media e varianza non possono essere determinate senza ulteriori informazioni. Non si tratta di una variabile casuale discreta.
    • Funzione di ripartizione: P(a<X<b)=F(b)-F(a). P(X>a) = 1-F(a). La media non può essere negativa.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    Domande a Risposta Multipla PDF

    Description

    Questo quiz esplora i concetti di probabilità e variabili casuali, inclusi esperimenti casuali con dadi e palline. Analizzerà l'unione e l'intersezione di eventi, così come le caratteristiche delle variabili casuali discrete e continue. Metti alla prova le tue conoscenze in statistica e probabilità!

    More Like This

    Use Quizgecko on...
    Browser
    Browser