Polinomios e Inecuaciones de Algebra
8 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Empareja los siguientes términos relacionados con polinomios:

Grado = La mayor potencia de la variable en la expresión Coeficiente principal = Coeficiente del término con la mayor potencia Término constante = Término en el polinomio que no contiene variable Variable = Símbolo que representa un número desconocido

Empareja los siguientes símbolos con su significado en desigualdades:

= Mayor que < = Menor que ≤ = Menor o igual que ≠ = No es igual a

Empareja las funciones cuadráticas con sus características:

f(x) = ax² + bx + c = Forma general de una función cuadrática Parábola = Gráfica de una función cuadrática Vértice = Punto más alto o bajo de la parábola Ejes de simetría = Línea que divide la parábola en dos partes iguales

Empareja las formas de ecuaciones lineales con su definición:

<p>Formación estándar = Ax + By = C Forma pendiente-intersección = y = mx + b Pendiente = Tasa de cambio entre dos variables Intersección y = Valor de y cuando x = 0</p> Signup and view all the answers

Empareja los términos con los métodos de factorización:

<p>Factor común = Identificar factores en todos los términos Diferencia de cuadrados = a² - b² = (a + b)(a - b) Trinomio cuadrado perfecto = (a ± b)² = a² ± 2ab + b² Factores irreducibles = No se puede factorizar más</p> Signup and view all the answers

Empareja las propiedades de las desigualdades con sus descripciones:

<p>Multiplicación por un número positivo = Mantiene la dirección de la desigualdad Multiplicación por un número negativo = Invierte la dirección de la desigualdad Desigualdad compuesta = Combinación de dos o más desigualdades Intervalos = Representación gráfica de soluciones en la recta numérica</p> Signup and view all the answers

Empareja los métodos para encontrar el vértice de una función cuadrática:

<p>Fórmula del vértice = -b/2a Completando el cuadrado = Reorganizar la ecuación cuadrática Gráficos = Representación visual de la función Factores reales = Soluciones donde la función cruza el eje x</p> Signup and view all the answers

Empareja los tipos de ecuaciones lineales con sus características:

<p>Ecuaciones consistentes = Tienen al menos una solución Ecuaciones inconsistentes = No tienen soluciones Ecuaciones dependientes = Infinitas soluciones Ecuaciones independientes = Tienen una sola solución</p> Signup and view all the answers

Study Notes

Polynomials

  • Polynomials are algebraic expressions consisting of variables and coefficients, involving only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables.
  • Examples of polynomials include: x² + 2x + 1, 3y³ - 5y + 7, and 8z.
  • Key characteristics of polynomials include degree, leading coefficient, and constant term.
  • The degree of a polynomial is the highest power of the variable in the expression.
  • The leading coefficient is the coefficient of the term with the highest power of the variable.
  • The constant term is the term in the polynomial that does not contain a variable.

Inequalities

  • Inequalities represent a relationship between two expressions that are not necessarily equal.
  • Symbols used to represent inequalities include: > (greater than), < (less than), ≥ (greater than or equal to), ≤ (less than or equal to), ≠ (not equal to).
  • Inequalities can be solved using algebraic methods similar to solving equations, but with the important consideration of flipping the inequality sign when multiplying or dividing by a negative number.
  • Solutions to inequalities are often represented using intervals on a number line.

Quadratic Functions

  • Quadratic functions are polynomial functions of degree 2.
  • Their general form is f(x) = ax² + bx + c, where 'a', 'b', and 'c' are constants and 'a'≠0.
  • The graph of a quadratic function is a parabola.
  • Key features of parabolas include vertex, axis of symmetry, and x-intercepts (roots or solutions).
  • Methods for finding the vertex include completing the square, the vertex formula (-b/2a), and graphing.

Linear Equations

  • Linear equations represent a relationship between two variables that, when graphed, form a straight line.
  • The general form of a linear equation is Ax + By = C (standard form) or y = mx + b (slope-intercept form), where 'm' is the slope and 'b' is the y-intercept.
  • The slope of a line represents the rate of change between two variables.
  • Solutions to linear equations are pairs of values (x, y) that satisfy the equation. These solutions can be found graphically or algebraically.
  • Systems of linear equations can be solved using graphical methods (intersection of lines), substitution, or elimination.

Factoring Techniques

  • Factoring involves rewriting an expression as a product of its factors.
  • Common factoring involves identifying common factors in all terms.
  • Difference of squares is a special factoring technique for expressions that follow the pattern a² – b² = (a – b)(a + b).
  • Trinomial factoring involves factoring expressions of the form ax² + bx + c. Techniques like grouping or trial-and-error can be used.
  • Grouping is a useful technique for factoring polynomials with four or more terms.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Description

Este cuestionario abarca conceptos fundamentales sobre polinomios e inecuaciones. Aprenderás sobre las características de los polinomios, como su grado y términos. También se explorarán las relaciones de inecuaciones y su representación algebraica.

More Like This

Use Quizgecko on...
Browser
Browser