Physics Motion Problems
5 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

What is the position of the particle at $t = 4$ seconds if it starts at $x_o = 2$ m?

  • 34 m (correct)
  • 20 m
  • 22 m
  • 16 m
  • What is the acceleration of the object at $t = 3$ seconds?

  • 10 m/s² (correct)
  • 8 m/s²
  • 14 m/s²
  • 16 m/s²
  • What is the displacement of the car between $t = 1$ and $t = 3$ seconds?

  • 12 m
  • 4 m
  • 8 m (correct)
  • 6 m
  • If the initial velocity of the object is 5 m/s, what is its velocity after 5 seconds?

    <p>27 m/s</p> Signup and view all the answers

    What is the value of the velocity function at $t = 2$ seconds for the particle moving with $v(t) = 3t^2 - 2t + 1$?

    <p>7 m/s</p> Signup and view all the answers

    Study Notes

    Problem 1: Particle Motion with Velocity Function

    • Given velocity function: ( v(t) = 3t^2 - 2t + 1 ) m/s.
    • Initial position: ( x_0 = 2 ) m at ( t = 0 ).
    • To find position ( x(t) ), integrate the velocity function ( v(t) ).
    • Integration yields: ( x(t) = t^3 - t^2 + t + C ).
    • Apply initial condition to solve for ( C ): ( C = 2 ).
    • Therefore, position function is ( x(t) = t^3 - t^2 + t + 2 ).
    • Calculate position at ( t = 4 ): ( x(4) = 4^3 - 4^2 + 4 + 2 = 74 ) m.

    Problem 2: Object Motion with Acceleration Function

    • Given acceleration function: ( a(t) = 6t - 2 ) m/s².
    • Initial conditions: velocity ( v(0) = 5 ) m/s and position ( x(0) = 3 ) m.
    • To find position, integrate acceleration to find velocity: ( v(t) = 3t^2 - 2t + C ) where ( C = 5 ).
    • Velocity function becomes ( v(t) = 3t^2 - 2t + 5 ).
    • Integrate velocity to find position: ( x(t) = t^3 - t^2 + 5t + D ) where ( D = 3 ).
    • Position function is ( x(t) = t^3 - t^2 + 5t + 3 ).
    • Calculate position at ( t = 5 ): ( x(5) = 5^3 - 5^2 + 25 + 3 = 143 ) m.

    Problem 3: Car Displacement Calculation

    • Velocity function for the car: ( v(t) = 2t^3 - 3t^2 + 4t ) m/s.
    • To calculate displacement, integrate the velocity function over the interval ( [1, 3] ).
    • Integration leads to ( s(t) = \frac{1}{2}t^4 - t^3 + 2t + C ).
    • Determine displacement: Displacement ( \Delta s = x(3) - x(1) ) using evaluated functions.
    • Calculate ( x(3) ) and ( x(1) ):
      • ( x(3) = \frac{1}{2}(3^4) - (3^3) + 2(3) ).
      • ( x(1) = \frac{1}{2}(1^4) - (1^3) + 2(1) ).
    • Result is the total displacement over the given interval.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    This quiz focuses on solving motion problems using integration. You will calculate the position of a particle and an object's position based on given velocity and acceleration functions. Test your understanding of motion concepts in physics.

    More Like This

    Motion
    28 questions

    Motion

    HallowedHeliotrope avatar
    HallowedHeliotrope
    Integration
    16 questions

    Integration

    ExceptionalQuasimodo avatar
    ExceptionalQuasimodo
    Newton's Laws of Motion Quiz
    40 questions
    Use Quizgecko on...
    Browser
    Browser