Photosynthese: Lichtreaktion

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

Wo findet die Lichtreaktion der Photosynthese statt?

  • In der Zellwand
  • In den Mitochondrien
  • Im Cytoplasma
  • In den Thylakoidmembranen der Chloroplasten (correct)

Welches Enzym spielt eine zentrale Rolle bei der Fixierung von Kohlenstoffdioxid im Calvin-Zyklus?

  • NADP+-Reduktase
  • ATP-Synthase
  • Rubisco (correct)
  • Cytochrom-Komplex

Der Calvin-Zyklus benötigt direkt Licht, um Glukose zu produzieren.

False (B)

Bei CAM-Pflanzen findet die CO2-Fixierung nachts statt, wobei CO2 in ______ umgewandelt wird.

<p>Malat</p> Signup and view all the answers

Ordne die folgenden Prozesse ihren jeweiligen Standorten in den Chloroplasten zu:

<p>Lichtreaktion = Thylakoidmembran Calvin-Zyklus = Stroma ATP-Synthase = Thylakoidmembran Photosystem II = Thylakoidmembran</p> Signup and view all the answers

Welche Rolle spielt Wasser (H2O) in der Lichtreaktion der Photosynthese?

<p>Wird gespalten, um Elektronen, Protonen und Sauerstoff zu liefern.</p> Signup and view all the answers

Was ist das Hauptziel der Elektronentransportkette in der Lichtreaktion?

<p>Erzeugung eines Protonengradienten (D)</p> Signup and view all the answers

C4-Pflanzen haben eine höhere Photosyntheserate bei niedrigen Temperaturen im Vergleich zu C3-Pflanzen.

<p>False (B)</p> Signup and view all the answers

Der Prozess, bei dem ATP durch einen Protonengradienten über die Thylakoidmembran erzeugt wird, wird als ______ bezeichnet.

<p>Chemiosmose</p> Signup and view all the answers

Ordne die folgenden Begriffe ihren Funktionen im Calvin-Zyklus zu:

<p>CO2 = Substrat RuBP = Akzeptor von CO2 Glukose = Produkt ATP = Energiequelle</p> Signup and view all the answers

Welches Molekül dient als direkter Akzeptor für Elektronen am Ende der Elektronentransportkette im Photosystem I?

<p>NADP+ (B)</p> Signup and view all the answers

Die Zellatmung findet nur in Pflanzenzellen statt.

<p>False (B)</p> Signup and view all the answers

Der Prozess, bei dem Glukose in Pyruvat umgewandelt wird, wird als ______ bezeichnet.

<p>Glykolyse</p> Signup and view all the answers

Welches der folgenden Moleküle wird im Zitratzyklus freigesetzt?

<p>Kohlenstoffdioxid (A)</p> Signup and view all the answers

Die Elektronentransportkette in der Zellatmung findet in den Thylakoidmembranen statt.

<p>False (B)</p> Signup and view all the answers

Welches Molekül wird am Ende der Elektronentransportkette in der Zellatmung reduziert?

<p>Sauerstoff (D)</p> Signup and view all the answers

Bei der alkoholischen Gärung wird Pyruvat in ______ umgewandelt.

<p>Ethanol</p> Signup and view all the answers

Welche der folgenden Aussagen beschreibt am besten den Unterschied zwischen aerober und anaerober Zellatmung?

<p>Aerobe Atmung verwendet Sauerstoff, während anaerobe Atmung keinen Sauerstoff verwendet. (A)</p> Signup and view all the answers

Bei der Milchsäuregärung wird Pyruvat direkt in Ethanol umgewandelt.

<p>False (B)</p> Signup and view all the answers

Warum ist die Photosynthese für das Leben auf der Erde von Bedeutung?

<p>Produziert Sauerstoff und bildet die Grundlage der meisten Nahrungsketten.</p> Signup and view all the answers

Flashcards

Fotosynthese

Umwandlung von Lichtenergie in chemische Energie innerhalb der Thylakoidmembran.

Lichtreaktion

Lichtenergie wird von Antennenkomplexen aufgenommen und in chemische Energie umgewandelt; Wasserspaltung setzt Sauerstoff frei.

Elektronentransportkette

Eine Reihe von Proteinen, die Elektronen transportieren und Energie für die Protonenpumpe liefern, um einen elektrochemischen Gradienten zu erzeugen.

Photolyse

Spaltung von Wasser in Protonen, Elektronen und Sauerstoff durch Lichtenergie.

Signup and view all the flashcards

ATP-Synthase

Nutzt den Protonengradienten, um ATP zu erzeugen, indem ADP phosphoryliert wird.

Signup and view all the flashcards

Calvin-Zyklus

Fixiert CO2, reduziert es und regeneriert den Akzeptor RuBP, um Kohlenhydrate zu produzieren.

Signup and view all the flashcards

RuBisCO

Enzym, das CO2 an Ribulose-1,5-bisphosphat (RuBP) bindet, um den Calvin-Zyklus zu starten.

Signup and view all the flashcards

Glykolyse

Abbau von Glukose in Pyruvat im Zytoplasma, liefert ATP und NADH.

Signup and view all the flashcards

Pyruvatoxidation

Umwandlung von Pyruvat in Acetyl-CoA im Mitochondrium, setzt CO2 und NADH frei.

Signup and view all the flashcards

Zitratzyklus

Abfolge chemischer Reaktionen im Mitochondrium, die Acetyl-CoA oxidieren und Energie in Form von ATP, NADH und FADH2 freisetzen.

Signup and view all the flashcards

Atmungskette

Übertragung von Elektronen von NADH und FADH2 auf Sauerstoff, um ATP zu erzeugen.

Signup and view all the flashcards

Zellgärung

Anaerober Abbau von Glukose, der Lactat oder Ethanol produziert.

Signup and view all the flashcards

C4-Pflanzen

CO2 wird durch PEP-Carboxylase in Oxalacetat fixiert, räumliche Trennung der CO2-Fixierung und des Calvin-Zyklus.

Signup and view all the flashcards

CAM-Pflanzen

CO2 wird nachts fixiert und tagsüber im Calvin-Zyklus verarbeitet, zeitliche Trennung der CO2-Fixierung.

Signup and view all the flashcards

Photosysteme

Bestehen aus Lichtsammelkomplexen und Chlorophyll, absorbieren Lichtenergie.

Signup and view all the flashcards

Wo Lichtreaktion stattfindet

Findet in den Thylakoidmembranen der Chloroplasten statt.

Signup and view all the flashcards

Hauptprodukt des Calvin-Zyklus

Glukose ist das Hauptprodukt.

Signup and view all the flashcards

Pflanzenart mit C4-Weg

Mais.

Signup and view all the flashcards

Energiegewinnung ohne Sauerstoff

Zellgärung.

Signup and view all the flashcards

Rolle der Photosysteme

Photosystem II spaltet Wasser, Photosystem I reduziert NADP+.

Signup and view all the flashcards

Study Notes

Photosynthesis - Light Reaction

  • Occurs within the thylakoid membrane.
  • Light (photons) is absorbed by antenna complexes of chlorophyll.
  • Energy is transferred to an electron which becomes excited.
  • Excited electron is transported via an electron transport chain.
  • Photolysis splits H₂O into H⁺, electrons, and O.
  • O₂ leaves the plant (the source of O₂ in the equation of photosynthesis).
  • H⁺ and electrons replenish the electron vacancies in Photosystem II (P680).
  • Electrons are taken up by an acceptor molecule and transported via an electron transport chain to Photosystem I (P700).
  • Energy from the electron transport chain drives a proton pump in the cytochrome complex.
  • Protons (H⁺) accumulate from the stroma to inside the thylakoid lumen to establish an electrochemical gradient.
  • Photosystem I (P700) absorbs photons via antenna complexes, causing electrons to become excited.
  • Electrons are transported via another electron transport chain to NADP⁺ reductase. -NADP⁺ + H⁺ is reduced to NADPH + H⁺.
  • The electron vacancy in Photosystem I is filled by electrons from Photosystem II.
  • ATP Synthase facilitates photophosphorylation.
  • Driven by a charge/concentration gradient (H⁺).
  • H⁺ flows from the thylakoid lumen into stroma.
  • Rotation in the F₀ subunit of ATP synthase causes a spatial alteration.
  • Alteration enables binding to form ATP.
  • ADP + Phosphate forms ATP; converts kinetic energy into chemical energy.

Calvin Cycle

  • Carboxylation: CO₂ is absorbed from the stroma and chemically bound to ribulose-1,5-bisphosphate by the enzyme RuBisCO.
  • Forms an unstable C-6 body that breaks down into two C-3 bodies (PGA).
  • Reduction: ATP is split into ADP + P.
  • Phosphorylation occurs.
  • NADPH + H⁺ transfers two electrons + H⁺.
  • GAP (glyceraldehyde-3-phosphate) is produced.
  • ⅙ of GAP goes to make glucose.
  • ⁵/₆ is recycled for RuBP regeneration

Cellular Respiration - Glycolysis

  • Occurs in the cytoplasm.
  • Glucose (C₆H₁₂O₆) is split into two pyruvate molecules, requiring two ATP molecules (phosphorylation).
  • Produces two pyruvate molecules, two ATP, and two NADH + H⁺.

Pyruvate Oxidation

  • Occurs in the mitochondria.
  • Pyruvate molecules are converted into Acetyl-CoA.
  • Produces Acetyl-CoA, CO₂, and NADH per pyruvate molecule.

Citric Acid Cycle (Krebs Cycle)

  • Occurs in the mitochondria.
  • Acetyl-CoA undergoes chemical reactions to generate electrons.
  • Per Acetyl-CoA: Produces 2CO₂, 1 ATP, 3 NADH + 1 FADH₂ which store energy, and GTP to produce ATP

Respiratory Chain (Electron Transport Chain)

  • Occurs in the inner mitochondrial membrane.
  • Collects electrons from NADH + FADH₂ and allows energy to be released.
  • Uses the released energy for ATP synthase function and produces up to 34 ATP per glucose molecule.
  • Electrons + hydrogen ions + oxygen form H₂O.

Glycolysis - Overview

  • Glucose, NAD⁺, ADP + P are converted into Pyruvate, ATP, NADH + H⁺.

Activation (Pyruvate Oxidation) - Overview

  • Pyruvate, CoA-SH, NAD⁺ are converted into CO₂, Acetyl-CoA, NADH + H⁺

Citric Acid Cycle - Overview

  • Acetyl-CoA, NADH + H⁺ are converted into CO₂, CoA-SH, NADH + H⁺, FADH₂, GTP.

Respiratory Chain - Overview

  • NADH + H⁺, FADH₂, ADP+P, O₂ are converted into H₂O, NAD⁺, FAD, ATP.

Fermentation

  • Glycolysis: NADH cannot release electrons to the electron transport chain as there is no NAD⁺.
  • NADH transfers electrons directly to pyruvate.
  • Generate Lactate and NAD⁺.
  • Lactic acid fermentation is carried out even if there is not enough O₂ to convert acetyl-CoA.

Photosystems

  • Consist of light-harvesting complexes of pigment molecules and a chlorophyll-a molecule pair as the reaction center.
  • Reaction centers are bound to different proteins, resulting in different absorption maxima.
  • Photosystem II (P680): Absorbs light energy to facilitate hydrolysis, electron donation, and oxygen release.
  • Photosystem I (P700): absorbs light energy to transfer electrons to NADP⁺ and reduces it to NADPH.

C-3 Plants

  • Non-specialized photosynthetic pathway; most plants are C3 plants.
  • Name originates from the first product of CO2 fixation, a 3-carbon compound (phosphoglycerate).
  • CO2-fixing enzyme is RuBisCO (ribulose carboxylase).
  • Mesophyll accounts for a large portion of the leaf mass with many chloroplasts, thus has high activity.
  • Under hot/dry conditions, the stomata close, reducing water loss.
  • O2 accumulates in the plant, RuBisCO binds O2 as a substrate.
  • Photosynthesis declines by up to 50%.
  • Higher temperatures reduce photosynthesis.

C-4 Plants

  • Spatial separation.
  • Adapted to warm or hot environments.
  • First product of CO2 fixation is a C4-body (oxaloacetate).
  • Close stomata under hot days.
  • CO2 is fixed by mesophyll cells and transferred to bundle sheath cells.
  • RuBisCO can be used in the Calvin cycle inside the bundle sheath cells.
  • PEP-carboxylase is in the mesophyll: fixes CO2, even at lower CO2 concentrations.
  • Oxaloacetate is converted to malate.
  • Malate diffuses into bundle sheath cells.

CAM Plants (Succulents)

  • Temporal separation.
  • Adapted to high temperatures and water scarcity.
  • Have similar initial CO₂ fixation steps as C4 plants.
  • Stomata open at night (low water loss).
  • CO2 in mesophyll cells is bound to PEP Carboxylase.
  • Formation in malate, the salt of apple acid.
  • Lowers the pH value at night.
  • The next day the CO₂ from malate is released and fed into the Calvin cycle.

Sample Exam

Calvin Cycle

  • In the Calvin cycle, there are three steps.
  • In the first step, CO₂ is fixed by the enzyme RuBisCO and converted to PGA.
  • During the reduction of PGA, ATP and NADPH are required to produce glucose.
  • Turning ATP into ADP and NADPH into NADP.
  • This process generates ADP and NADP, which are used in the light-dependent reactions for ATP and NADPH synthesis.
  • In the last step, the rest - 5/6 - will be converted to Rubisco using ATP to regenerate it.

Disadvantages - Calvin Cycle

  • The light-dependent reactions require ADP for ATP synthase.
  • However, this restores the concentration gradient for hydrogen.

C3 Plants - Advantages

  • Non-specific, widely distributed.
  • Presence of many mesophyll cells with chloroplasts, thus resulting in high photosynthetic rate.

C3 Plants - Disadvantages

  • There is not always enough CO₂.

Photosystem II

  • Photosystem II P680 absorbs light at a wavelength of 680 nm by using energy for this hydrolysis.

Aerobic Respiration

  • Aerobic and anaerobic respiration are types of cell respiration.
  • Glycolysis and the citric acid cycle occur in three plant species.
  • The first is the C3 plant since they are high in CO carbon.
  • C4 is in regions and can also act as The first carbon-fixing species in those plants will then often generate C4 for a living.
  • C-4 Plants have a spatial separation of CO(2) fixation, which happens in the mesophyll
  • Calvin Cycle - this will require bundle sheath cells, resulting in a unique form of oxygen and RuBisCo in CAT Plants.

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

More Like This

The Light-Dependent Reactions
8 questions

The Light-Dependent Reactions

InestimableTurquoise avatar
InestimableTurquoise
Thylakoid Membranes and Light Reactions
10 questions
Photosynthesis: Light-Dependent Reactions
10 questions
Use Quizgecko on...
Browser
Browser