Penggandaan Radikal: Dasar-dasar Matematika
10 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

Jika $\sqrt{3x} \cdot \sqrt{5y} = \sqrt{15xy}$, nilai x dan y berturut-turut adalah ...

  • x = 5, y = 3
  • x = 3, y = 5 (correct)
  • x = 9, y = 25
  • x = 25, y = 9
  • Bentuk penyederhanaan dari $\sqrt{72} \cdot \sqrt{125}$ adalah ...

  • $60\sqrt{5}$
  • $120\sqrt{5}$
  • $30\sqrt{5}$ (correct)
  • $90\sqrt{5}$
  • Nilai dari $\sqrt{8x^3y^5} \cdot \sqrt{4xy^3}$ dalam bentuk sederhana adalah ...

  • $2\sqrt{32x^4y^8}$
  • $4xy^2\sqrt{x^3y^3}$
  • $2x\sqrt{y^8}$
  • $4\sqrt{x^4y^8}$ (correct)
  • Jika $\sqrt[3]{x^2y} \cdot \sqrt[3]{xy^4} = x^2y^5$, nilai x dan y berturut-turut adalah ...

    <p>x = 9, y = 27</p> Signup and view all the answers

    Bentuk penyederhanaan dari $\sqrt[4]{16a^8b^{12}} \cdot \sqrt[4]{a^4b^6}$ adalah ...

    <p>$2\sqrt[4]{a^{12}b^{18}}$</p> Signup and view all the answers

    Nilai dari $\sqrt{2x^3} \cdot \sqrt[3]{8y^6} \div \sqrt[6]{16x^3y^2}$ dalam bentuk sederhana adalah ...

    <p>$2\sqrt[6]{x^3y^4}$</p> Signup and view all the answers

    Berapakah hasil dari perkalian: $3 \sqrt { 6 } \cdot 5 \sqrt { 2 }$?

    <p>$30 \sqrt { 3 }</p> Signup and view all the answers

    Tentukan nilai dari $x$ dalam persamaan: $\sqrt [ 3 ] { 9x - 6 } = 2 \sqrt [ 3 ] { 2x + 3 }$

    <p>$x = 2</p> Signup and view all the answers

    Jika kita menyederhanakan ekspresi: $\sqrt{2} \cdot 3 \sqrt{4} \cdot 2 \sqrt{3}$, maka hasilnya adalah:

    <p>$72</p> Signup and view all the answers

    Jika $\sqrt{6} \cdot 2 \sqrt{3} = x$, maka nilai $x$ adalah:

    <p>$6 \sqrt{3}</p> Signup and view all the answers

    Study Notes

    Radical Multiplication: The Fundamentals

    In mathematics, multiplying radical expressions plays a crucial role in various calculations. Whether you're dealing with algebra, calculus, or other advanced mathematical concepts, understanding how to multiply radicals is essential. This article aims to provide a comprehensive overview of the topic, covering multiplying radicals, solving radical equations, and simplifying radicals.

    Multiplying Radicals

    When multiplying radical expressions with the same index, we use the product rule for radicals. According to this rule, given real numbers (\sqrt [ n ] { A }) and (\sqrt [ n ] { B }), we can multiply them as follows:

    [ \sqrt [ n ] { A } \cdot \sqrt [ n ] { B } = \sqrt [ n ] { A \cdot B } ]

    For example, consider the multiplication of two radical expressions:

    [ \sqrt{2^3 \cdot 3^2} = 2 \sqrt{3^2} = 2 \sqrt{9} ]

    Often, there will be coefficients in front of the radicals. In this case, you can follow the same product rule and simplify as necessary. Remember that multiplication is commutative, meaning you can change the order of the multiplication factors without changing the result.

    Example 1: Multiply: (3 \sqrt { 6 } \cdot 5 \sqrt { 2 })

    To multiply radical expressions, remember to keep the same index and apply the product rule:

    [ 3 \sqrt { 6 } \cdot 5 \sqrt { 2 } = 3 \cdot 5 \sqrt { 6 \cdot 2 } = 15 \sqrt { 12 } ]

    Simplifying the result, we get:

    [ 15 \sqrt { 12 } = 15 \sqrt { 4 \cdot 3 } = 15 \cdot \sqrt { 4 } \cdot \sqrt { 3 } = 15 \cdot 2 \cdot \sqrt { 3 } = 30 \sqrt { 3 } ]

    So, the solution is (30 \sqrt { 3 }).

    Solving Radical Equations

    Solving radical equations involves isolating the unknown variable under the radical sign. There are several methods for solving these types of equations, depending on the complexity of the equation. For instance, you might need to rationalize the denominator or apply substitution techniques.

    Example 2: Solve the equation (\sqrt [ 3 ] { 9x - 6 } = 2 \sqrt [ 3 ] { 2x + 3 })

    First, rationalize the denominator on the left side:

    [ \sqrt [ 3 ] { 9x - 6 } = \frac { 2 \sqrt [ 3 ] { 2x + 3 } } { \sqrt [ 3 ] { 2x + 3 } } ]

    Now, cross-multiply:

    [ \sqrt [ 3 ] { 9x - 6 } \cdot \sqrt [ 3 ] { 2x + 3 } = 2 \sqrt [ 3 ] { 2x + 3 } ]

    Combine like terms:

    [ \text{Let } 9x - 6 = 2(x + 3) \text{, then solve for x:} ]

    [ 9x - 6 = 2x + 6 ]

    Subtract (3x) from both sides:

    [ 6x - 6 = 6 ]

    Add (6) to both sides:

    [ 6x = 12 ]

    Divide by (6):

    [ x = 2 ]

    So, the solution is (x = 2).

    Simplifying Radicals

    Simplifying radicals involves breaking down complex expressions under the radical sign into simpler forms. There are several methods for simplifying radical expressions, depending on their structure. One common method is the product rule of radicals, which states that:

    [ a \sqrt[m]{b} \cdot c \sqrt[m]{d} = ac \sqrt[m]{bd} ]

    Example 3: Simplify the radical expression (\sqrt{2} \cdot 3 \sqrt{4} \cdot 2 \sqrt{3})

    Using the product rule of radicals:

    [ \text{Let } a = \sqrt{2} \text{, } b = 3 \text{, } c = 3 \text{, and } d = 4 \text{:} ]

    [ \sqrt{2} \cdot 3 \sqrt{4} \cdot 2 \sqrt{3} = (\sqrt{2})^2 \cdot 3 \cdot 4 \cdot (\sqrt{3})^2 = 2 \cdot 3 \cdot 4 \cdot 3 = 2 \cdot 12 \cdot 3 = 72 ]

    So, the simplified expression is (72).

    In conclusion, multiplying radicals, solving radical equations, and simplifying radicands are essential skills in mathematics. By understanding these concepts and practicing them regularly, you'll become more confident in your ability to tackle various mathematical problems involving radicals.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Pelajari bagaimana mengalikan ekspresi radikal, menyelesaikan persamaan radikal, dan menyederhanakan radikal melalui artikel ini. Mulai dari aturan produk radikal hingga langkah-langkah untuk menyelesaikan persamaan radikal, materi ini akan membantu Anda memahami topik tersebut secara komprehensif.

    More Like This

    Use Quizgecko on...
    Browser
    Browser