Podcast
Questions and Answers
Jika $\sqrt{3x} \cdot \sqrt{5y} = \sqrt{15xy}$, nilai x dan y berturut-turut adalah ...
Jika $\sqrt{3x} \cdot \sqrt{5y} = \sqrt{15xy}$, nilai x dan y berturut-turut adalah ...
Bentuk penyederhanaan dari $\sqrt{72} \cdot \sqrt{125}$ adalah ...
Bentuk penyederhanaan dari $\sqrt{72} \cdot \sqrt{125}$ adalah ...
Nilai dari $\sqrt{8x^3y^5} \cdot \sqrt{4xy^3}$ dalam bentuk sederhana adalah ...
Nilai dari $\sqrt{8x^3y^5} \cdot \sqrt{4xy^3}$ dalam bentuk sederhana adalah ...
Jika $\sqrt[3]{x^2y} \cdot \sqrt[3]{xy^4} = x^2y^5$, nilai x dan y berturut-turut adalah ...
Jika $\sqrt[3]{x^2y} \cdot \sqrt[3]{xy^4} = x^2y^5$, nilai x dan y berturut-turut adalah ...
Signup and view all the answers
Bentuk penyederhanaan dari $\sqrt[4]{16a^8b^{12}} \cdot \sqrt[4]{a^4b^6}$ adalah ...
Bentuk penyederhanaan dari $\sqrt[4]{16a^8b^{12}} \cdot \sqrt[4]{a^4b^6}$ adalah ...
Signup and view all the answers
Nilai dari $\sqrt{2x^3} \cdot \sqrt[3]{8y^6} \div \sqrt[6]{16x^3y^2}$ dalam bentuk sederhana adalah ...
Nilai dari $\sqrt{2x^3} \cdot \sqrt[3]{8y^6} \div \sqrt[6]{16x^3y^2}$ dalam bentuk sederhana adalah ...
Signup and view all the answers
Berapakah hasil dari perkalian: $3 \sqrt { 6 } \cdot 5 \sqrt { 2 }$?
Berapakah hasil dari perkalian: $3 \sqrt { 6 } \cdot 5 \sqrt { 2 }$?
Signup and view all the answers
Tentukan nilai dari $x$ dalam persamaan: $\sqrt [ 3 ] { 9x - 6 } = 2 \sqrt [ 3 ] { 2x + 3 }$
Tentukan nilai dari $x$ dalam persamaan: $\sqrt [ 3 ] { 9x - 6 } = 2 \sqrt [ 3 ] { 2x + 3 }$
Signup and view all the answers
Jika kita menyederhanakan ekspresi: $\sqrt{2} \cdot 3 \sqrt{4} \cdot 2 \sqrt{3}$, maka hasilnya adalah:
Jika kita menyederhanakan ekspresi: $\sqrt{2} \cdot 3 \sqrt{4} \cdot 2 \sqrt{3}$, maka hasilnya adalah:
Signup and view all the answers
Jika $\sqrt{6} \cdot 2 \sqrt{3} = x$, maka nilai $x$ adalah:
Jika $\sqrt{6} \cdot 2 \sqrt{3} = x$, maka nilai $x$ adalah:
Signup and view all the answers
Study Notes
Radical Multiplication: The Fundamentals
In mathematics, multiplying radical expressions plays a crucial role in various calculations. Whether you're dealing with algebra, calculus, or other advanced mathematical concepts, understanding how to multiply radicals is essential. This article aims to provide a comprehensive overview of the topic, covering multiplying radicals, solving radical equations, and simplifying radicals.
Multiplying Radicals
When multiplying radical expressions with the same index, we use the product rule for radicals. According to this rule, given real numbers (\sqrt [ n ] { A }) and (\sqrt [ n ] { B }), we can multiply them as follows:
[ \sqrt [ n ] { A } \cdot \sqrt [ n ] { B } = \sqrt [ n ] { A \cdot B } ]
For example, consider the multiplication of two radical expressions:
[ \sqrt{2^3 \cdot 3^2} = 2 \sqrt{3^2} = 2 \sqrt{9} ]
Often, there will be coefficients in front of the radicals. In this case, you can follow the same product rule and simplify as necessary. Remember that multiplication is commutative, meaning you can change the order of the multiplication factors without changing the result.
Example 1: Multiply: (3 \sqrt { 6 } \cdot 5 \sqrt { 2 })
To multiply radical expressions, remember to keep the same index and apply the product rule:
[ 3 \sqrt { 6 } \cdot 5 \sqrt { 2 } = 3 \cdot 5 \sqrt { 6 \cdot 2 } = 15 \sqrt { 12 } ]
Simplifying the result, we get:
[ 15 \sqrt { 12 } = 15 \sqrt { 4 \cdot 3 } = 15 \cdot \sqrt { 4 } \cdot \sqrt { 3 } = 15 \cdot 2 \cdot \sqrt { 3 } = 30 \sqrt { 3 } ]
So, the solution is (30 \sqrt { 3 }).
Solving Radical Equations
Solving radical equations involves isolating the unknown variable under the radical sign. There are several methods for solving these types of equations, depending on the complexity of the equation. For instance, you might need to rationalize the denominator or apply substitution techniques.
Example 2: Solve the equation (\sqrt [ 3 ] { 9x - 6 } = 2 \sqrt [ 3 ] { 2x + 3 })
First, rationalize the denominator on the left side:
[ \sqrt [ 3 ] { 9x - 6 } = \frac { 2 \sqrt [ 3 ] { 2x + 3 } } { \sqrt [ 3 ] { 2x + 3 } } ]
Now, cross-multiply:
[ \sqrt [ 3 ] { 9x - 6 } \cdot \sqrt [ 3 ] { 2x + 3 } = 2 \sqrt [ 3 ] { 2x + 3 } ]
Combine like terms:
[ \text{Let } 9x - 6 = 2(x + 3) \text{, then solve for x:} ]
[ 9x - 6 = 2x + 6 ]
Subtract (3x) from both sides:
[ 6x - 6 = 6 ]
Add (6) to both sides:
[ 6x = 12 ]
Divide by (6):
[ x = 2 ]
So, the solution is (x = 2).
Simplifying Radicals
Simplifying radicals involves breaking down complex expressions under the radical sign into simpler forms. There are several methods for simplifying radical expressions, depending on their structure. One common method is the product rule of radicals, which states that:
[ a \sqrt[m]{b} \cdot c \sqrt[m]{d} = ac \sqrt[m]{bd} ]
Example 3: Simplify the radical expression (\sqrt{2} \cdot 3 \sqrt{4} \cdot 2 \sqrt{3})
Using the product rule of radicals:
[ \text{Let } a = \sqrt{2} \text{, } b = 3 \text{, } c = 3 \text{, and } d = 4 \text{:} ]
[ \sqrt{2} \cdot 3 \sqrt{4} \cdot 2 \sqrt{3} = (\sqrt{2})^2 \cdot 3 \cdot 4 \cdot (\sqrt{3})^2 = 2 \cdot 3 \cdot 4 \cdot 3 = 2 \cdot 12 \cdot 3 = 72 ]
So, the simplified expression is (72).
In conclusion, multiplying radicals, solving radical equations, and simplifying radicands are essential skills in mathematics. By understanding these concepts and practicing them regularly, you'll become more confident in your ability to tackle various mathematical problems involving radicals.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.
Description
Pelajari bagaimana mengalikan ekspresi radikal, menyelesaikan persamaan radikal, dan menyederhanakan radikal melalui artikel ini. Mulai dari aturan produk radikal hingga langkah-langkah untuk menyelesaikan persamaan radikal, materi ini akan membantu Anda memahami topik tersebut secara komprehensif.