Podcast
Questions and Answers
In the analysis of particle equilibrium, the size of the particle affects the equilibrium conditions.
In the analysis of particle equilibrium, the size of the particle affects the equilibrium conditions.
False (B)
What is the correct expression for the sum of forces in the x-direction for a particle in equilibrium in 2D?
What is the correct expression for the sum of forces in the x-direction for a particle in equilibrium in 2D?
- $\sum F_x < 0$
- $\sum F_x \neq 0$
- $\sum F_x = 0$ (correct)
- $\sum F_x > 0$
In the context of particle equilibrium, what condition must be met for all forces acting on the particle?
In the context of particle equilibrium, what condition must be met for all forces acting on the particle?
balanced
In 2D equilibrium problems, the sum of the forces in the z-direction must also equal zero.
In 2D equilibrium problems, the sum of the forces in the z-direction must also equal zero.
In a free body diagram, elements like cords, cables or chains are always in _________.
In a free body diagram, elements like cords, cables or chains are always in _________.
How can unknown forces be determined when solving equilibrium problems?
How can unknown forces be determined when solving equilibrium problems?
When drawing a system that should be in equilibrium, elements such as ropes, cables, and chains can withstand compression.
When drawing a system that should be in equilibrium, elements such as ropes, cables, and chains can withstand compression.
When solving for particle equilibrium, if we have more than two unknowns and a spring, we apply _________ to relate spring force with deformation.
When solving for particle equilibrium, if we have more than two unknowns and a spring, we apply _________ to relate spring force with deformation.
What needs to be identified before a free-body diagram can be drawn?
What needs to be identified before a free-body diagram can be drawn?
If a solution from force equilibrium results in a negative force magnitude, it means the initially assumed direction of the force is correct.
If a solution from force equilibrium results in a negative force magnitude, it means the initially assumed direction of the force is correct.
In static equilibrium, particles are assumed to be what, preventing rotation?
In static equilibrium, particles are assumed to be what, preventing rotation?
What is the significance of particle size in the context of equilibrium analyses?
What is the significance of particle size in the context of equilibrium analyses?
When setting up a free-body diagram, it is essential to only consider forces that are external to the system.
When setting up a free-body diagram, it is essential to only consider forces that are external to the system.
The diagram that represents all forces acting on a body or particle is called a _______.
The diagram that represents all forces acting on a body or particle is called a _______.
In the context of solving static problems, what does equilibrium signify?
In the context of solving static problems, what does equilibrium signify?
Match the following force components with their corresponding axes in a 3D Cartesian coordinate system:
Match the following force components with their corresponding axes in a 3D Cartesian coordinate system:
In the steps of analyzing a problem involving maximum load, what is the first step?
In the steps of analyzing a problem involving maximum load, what is the first step?
In the problems with maximum load, one condition maximum or minimun can conditions two or more vectors at once
In the problems with maximum load, one condition maximum or minimun can conditions two or more vectors at once
In rigid body mechanics, what distinguishes torque from a moment?
In rigid body mechanics, what distinguishes torque from a moment?
A _______ can be defined as two parallel forces that have the same magnitude but goes in opposite direction.
A _______ can be defined as two parallel forces that have the same magnitude but goes in opposite direction.
What defines a force that needs to be written with cartesian components?
What defines a force that needs to be written with cartesian components?
Rigid bodies are real.
Rigid bodies are real.
To calculate the vector of the moment, what's the definition of the vector r, also known as the position vector?
To calculate the vector of the moment, what's the definition of the vector r, also known as the position vector?
Forces are vectorial quantites, a general manner to identify those are writing ______ axis with vectorial form.
Forces are vectorial quantites, a general manner to identify those are writing ______ axis with vectorial form.
Under what conditions is the moment caused by a force around a specific point will be maximum?
Under what conditions is the moment caused by a force around a specific point will be maximum?
In 3D a force in the x-axis produces moment in the same axis.
In 3D a force in the x-axis produces moment in the same axis.
What type of function is most used when drawing a moment?
What type of function is most used when drawing a moment?
If vectors of force appear in both diagrams, the force is said ______.
If vectors of force appear in both diagrams, the force is said ______.
What is an example of the procedure to get the cross product in 2D?
What is an example of the procedure to get the cross product in 2D?
In the right-hand rule, the fingers points toward force vector.
In the right-hand rule, the fingers points toward force vector.
When you need to solve a 3D system, what procedure is recommended?
When you need to solve a 3D system, what procedure is recommended?
Equivalent functions in this step implies to take the system and __ .
Equivalent functions in this step implies to take the system and __ .
Match what kind of forces and the kind of forces for both of them.
Match what kind of forces and the kind of forces for both of them.
When you want a result with an equilibrium what rule should you followed?
When you want a result with an equilibrium what rule should you followed?
The signs are irrelevant.
The signs are irrelevant.
What is also a alternate for the moment?
What is also a alternate for the moment?
With what you can solve a systems equivalentes functions?
With what you can solve a systems equivalentes functions?
Which of the following situations describes torsion?
Which of the following situations describes torsion?
The formula M = F*d is also the cross product of vector form
The formula M = F*d is also the cross product of vector form
How any equation in moment is formed?
How any equation in moment is formed?
Match the formulas what it represent in the system.
Match the formulas what it represent in the system.
¿Cuál de las siguientes afirmaciones describe mejor el concepto de equilibrio de una partícula?
¿Cuál de las siguientes afirmaciones describe mejor el concepto de equilibrio de una partícula?
En el análisis del equilibrio de partículas, la rotación debe considerarse siempre, independientemente del tamaño de la partícula.
En el análisis del equilibrio de partículas, la rotación debe considerarse siempre, independientemente del tamaño de la partícula.
Si una partícula está en equilibrio, ¿qué valor tiene la suma de las componentes vectoriales de las fuerzas en el eje cartesiano î?
Si una partícula está en equilibrio, ¿qué valor tiene la suma de las componentes vectoriales de las fuerzas en el eje cartesiano î?
En un diagrama de cuerpo libre, los elementos como cuerdas, cables y cadenas se dibujan asumiendo que están siempre en _________.
En un diagrama de cuerpo libre, los elementos como cuerdas, cables y cadenas se dibujan asumiendo que están siempre en _________.
Relacione cada paso con su descripción correcta en el proceso de resolución de problemas de equilibrio de partículas.
Relacione cada paso con su descripción correcta en el proceso de resolución de problemas de equilibrio de partículas.
¿Por qué es importante determinar si todas las fuerzas se deben considerar al dibujar un esquema en el análisis de equilibrio?
¿Por qué es importante determinar si todas las fuerzas se deben considerar al dibujar un esquema en el análisis de equilibrio?
Resolver las fuerzas desconocidas antes de escribir las ecuaciones de equilibrio es un paso fundamental para asegurar la precisión en el análisis.
Resolver las fuerzas desconocidas antes de escribir las ecuaciones de equilibrio es un paso fundamental para asegurar la precisión en el análisis.
¿Qué representan las ecuaciones ΣFx = 0 y ΣFy = 0 en el contexto del equilibrio de partículas en 2D?
¿Qué representan las ecuaciones ΣFx = 0 y ΣFy = 0 en el contexto del equilibrio de partículas en 2D?
Si la solución para la magnitud de una fuerza resulta ser un valor negativo, esto indica que el _________ supuesto de la fuerza era incorrecto.
Si la solución para la magnitud de una fuerza resulta ser un valor negativo, esto indica que el _________ supuesto de la fuerza era incorrecto.
Relacione cada término con su descripción correcta en el contexto de momentos:
Relacione cada término con su descripción correcta en el contexto de momentos:
¿Cuál es un método efectivo para incrementar un momento?
¿Cuál es un método efectivo para incrementar un momento?
El momento mínimo ocurre cuando la fuerza es perpendicular al brazo de palanca.
El momento mínimo ocurre cuando la fuerza es perpendicular al brazo de palanca.
¿Qué deben cumplir los sistemas equivalentes de fuerzas?
¿Qué deben cumplir los sistemas equivalentes de fuerzas?
En un sistema donde solo interviene un momento, no debe multiplicarse por _________ en la sumatoria de momentos.
En un sistema donde solo interviene un momento, no debe multiplicarse por _________ en la sumatoria de momentos.
¿Qué es lo que se debe garantizar en un sistema equivalente de fuerzas?
¿Qué es lo que se debe garantizar en un sistema equivalente de fuerzas?
Se puede transformar un par en un momento multiplicando la distancia entre las fuerzas por la magnitud de una de las fuerzas.
Se puede transformar un par en un momento multiplicando la distancia entre las fuerzas por la magnitud de una de las fuerzas.
¿Cuándo ocurre el momento máximo en un brazo de palanca?
¿Cuándo ocurre el momento máximo en un brazo de palanca?
Si todas las distancias son conocidas en un problema con momentos y pares, tratar las fuerzas como cualquier otra fuerza ___________ se puede resolver.
Si todas las distancias son conocidas en un problema con momentos y pares, tratar las fuerzas como cualquier otra fuerza ___________ se puede resolver.
Relacione el tipo de análisis con su aplicación:
Relacione el tipo de análisis con su aplicación:
En el cálculo del momento alrededor de un punto usando el método vectorial, ¿en qué orden debe realizarse el producto?
En el cálculo del momento alrededor de un punto usando el método vectorial, ¿en qué orden debe realizarse el producto?
Un vector de posición es igual a un vector unitario.
Un vector de posición es igual a un vector unitario.
Para obtener el producto cruz en estática, ¿qué debe ser considerado, crear una matriz con las componentes vectoriales?
Para obtener el producto cruz en estática, ¿qué debe ser considerado, crear una matriz con las componentes vectoriales?
El producto cruz que se obtiene tiene un signo menos precediendo la operación porque el _________ de la expresión es negativo.
El producto cruz que se obtiene tiene un signo menos precediendo la operación porque el _________ de la expresión es negativo.
Relacione el tipo de energía con la descripción:
Relacione el tipo de energía con la descripción:
Al analizar el equilibrio de una partícula, ¿cuál de las siguientes opciones es NO una condición necesaria para asegurar que la partícula esté en equilibrio?
Al analizar el equilibrio de una partícula, ¿cuál de las siguientes opciones es NO una condición necesaria para asegurar que la partícula esté en equilibrio?
En un problema de equilibrio, si hay más de dos incógnitas y se implica un resorte, la relación entre la fuerza del resorte y la deformación del mismo debe ignorarse para simplificar el problema.
En un problema de equilibrio, si hay más de dos incógnitas y se implica un resorte, la relación entre la fuerza del resorte y la deformación del mismo debe ignorarse para simplificar el problema.
En el contexto de los momentos, ¿qué representan los vectores con doble flecha curva o una única flecha curva?
En el contexto de los momentos, ¿qué representan los vectores con doble flecha curva o una única flecha curva?
Si el ángulo entre la fuerza y el brazo es de 90 grados, entonces el momento es ________.
Si el ángulo entre la fuerza y el brazo es de 90 grados, entonces el momento es ________.
Relacione cada Sistema con su descripción:
Relacione cada Sistema con su descripción:
¿Cuál es el propósito de emplear sistemas equivalentes de fuerzas?
¿Cuál es el propósito de emplear sistemas equivalentes de fuerzas?
En sistemas equivalentes de fuerzas, la sumatoria de fuerzas y momentos puede ser diferente en el sistema original comparado con el sistema simplificado.
En sistemas equivalentes de fuerzas, la sumatoria de fuerzas y momentos puede ser diferente en el sistema original comparado con el sistema simplificado.
¿Escriba la ecuación de equilibrio en el eje y.
¿Escriba la ecuación de equilibrio en el eje y.
El requerimiento de equilibrio es a través de la sumatoria de las ______ y la sumatoria de los momentos.
El requerimiento de equilibrio es a través de la sumatoria de las ______ y la sumatoria de los momentos.
Si los dedos de la mano rotan en la dirección del vector fuerza , ¿qué indica el dedo gordo?
Si los dedos de la mano rotan en la dirección del vector fuerza , ¿qué indica el dedo gordo?
Flashcards
¿Qué es el equilibrio?
¿Qué es el equilibrio?
A state where a particle or body remains stationary, with all forces balanced.
Partículas infinitesimales
Partículas infinitesimales
These do not cause rotation in equilibrium analyses due to their infinitesimal size.
Fuerzas balanceadas
Fuerzas balanceadas
ΣFx = 0, ΣFy = 0, ΣFz = 0; All vectorial components are zero.
Diagrama de cuerpo libre
Diagrama de cuerpo libre
Signup and view all the flashcards
Pasos para resolver fuerzas
Pasos para resolver fuerzas
Signup and view all the flashcards
Objeto indeformable
Objeto indeformable
Signup and view all the flashcards
Nuevos términos
Nuevos términos
Signup and view all the flashcards
Torca
Torca
Signup and view all the flashcards
Par
Par
Signup and view all the flashcards
Ecuación momento
Ecuación momento
Signup and view all the flashcards
Vector de posición
Vector de posición
Signup and view all the flashcards
Incremento de momento
Incremento de momento
Signup and view all the flashcards
Producto vectorial
Producto vectorial
Signup and view all the flashcards
Matriz producto cruz
Matriz producto cruz
Signup and view all the flashcards
Momento máximo
Momento máximo
Signup and view all the flashcards
Momento mínimo
Momento mínimo
Signup and view all the flashcards
Sistemas equivalentes de fuerzas
Sistemas equivalentes de fuerzas
Signup and view all the flashcards
ΣFuerzas = ΣFuerzas
ΣFuerzas = ΣFuerzas
Signup and view all the flashcards
Símbologia de momento
Símbologia de momento
Signup and view all the flashcards
Momento - eje arbitrario
Momento - eje arbitrario
Signup and view all the flashcards
Vector unitario
Vector unitario
Signup and view all the flashcards
Momento de un par
Momento de un par
Signup and view all the flashcards
Study Notes
- Discusses the equilibrium of a particle, which is small enough so that size does not affect equilibrium.
- There is no rotation in these analyses because they involve infinitesimal particles.
- Equilibrium means that a particle or body is not moving and all forces are balanced.
Introduction to Particle Equilibrium
- With a small particle on the left, size does not affect equilibrium.
- On the right, a particle is pictured where size affects equilibrium because rotations could occur.
Balanced Forces
- Balanced forces mean:
- ΣFx = 0: All vector components of the Cartesian î axis.
- ΣFy = 0: All vector components of the Cartesian ĵ axis.
- ΣFz = 0: All vector components of the Cartesian k axis.
- There are multiple equations: 3 in space, 2 in the plane.
- In 2D: ΣFx = 0, ΣFy = 0
- In 3D: ΣFx = 0, ΣFy = 0, ΣFz = 0
- Only these equations are relevant because of dealing with particles. If particle size is large enough, equilibrium would have to include pairs or moments (torques in physics).
Free Body Diagram
- A free-body diagram is a starting concept.
- Draw a diagram with the forces involved, examining whether all forces should be considered.
- Determine the point of interest.
- Isolate to observe the forces involved.
- Draw the system that should be in equilibrium, noting that ropes, cables, and chains are always in tension and cannot withstand compression.
- Label all elements in the free-body diagram.
- Resolve all forces that have an angle in the system as Cartesian components.
- If the angled force moves away from the point, the components move away from that point, and vice versa if they move away.
- Write the equilibrium equations: ΣFx = 0, ΣFy = 0
- Solve for unknown forces using the equilibrium equations.
System Resolution Example
- The following system is presented as an example to resolve:
- A structure with points A, B, and C.
- A line runs from points A to B and A to C, both anchored at the top.
- Element A is connected to a block that weighs 50 Newtons
Steps 1-4
- Steps 1 to 4: Determine the point of interest, isolate the body to be studied, and add the forces involved.
- Step 5: Label forces.
- Step 6: Resolve the forces into Cartesian components.
Steps 7 & 8
- Step 7: Write the equilibrium equations.
- Step 8: Solve for the unknowns to the equation ΣFx = 0 = TABcos(20°) – TAccos(30°) and ΣFy = 0 = TABsin(20°) + TAcsin(30°) – 50.
- TAB = 56.5 N
- TAC = 61.3 N
Angle Example
- Exercise: Find the angle provided in the image.
Cable Tension Example
- Exercise: Find the tension in the cable provided in the image.
Cable and Pulley Example
- Exercise: Find the tension in the cable and the force on the pulley shown in the diagram
Coplanar Equilibrium Problems
- Coplanar force equilibrium problems for a particle can be solved using the following procedure:
Free-Body Diagram Steps
- Establish the x and y axes in any suitable orientation.
- Mark on the diagram all the magnitudes and directions of known and unknown forces.
- Assume the direction of a force with an unknown magnitude.
Equilibrium Equation Steps
- Apply the equilibrium equations ΣFx = 0 and ΣFy = 0.
- The components are positive if directed along a positive axis; they are negative if directed along a negative axis.
- Springs, apply F = ks to relate the spring force to the spring's deformation, s. Since the magnitude of a force is always positive, a negative result indicates that the force's direction is opposite to that shown on the free-body diagram.
Original Angle
- If the original angle was 45°, consider calculating the weight of each block in the diagram.
Maximum Load Problems
- Maximum load problems, considerations:
- Step 1: Choose a point to start, draw the free-body diagram, and solve for the unknowns in that part of the problem. (Follow the same analysis steps as for particle equilibrium.)
- Step 2: Choose a member under maximum load.
- Step 3: Write and solve the equilibrium equations.
- Step 4: If many free-body diagrams exist, draw the next free-body diagram, usually the contiguous one.
- Note: With multiple free-body diagrams, force vectors in both diagrams (contiguous diagrams) act in opposite directions (interaction between bodies should be in equilibrium, therefore, forces are opposite).
- Step 5: Write the equilibrium equations and solve.
- Step 6: Repeat the procedure to find all unknowns.
- Recommendation: For problems that provide a minimum and maximum condition, never condition more than one vector under maximum load simultaneously when solving the system.
Find Max Weight
- Find the maximum weight of the lamp without exceeding 100# in the cord.
Step 1: Select Starting
- Step 1: The starting point is selected, generally as far as possible from the point of interest (the lamp's weight); begin at point A.
Step 2: Select Cord
- Step 2: Select a cord with a maximum load of 100# and solve for the remaining tensions.
- If there are three unknowns, one is given (100), and there are two equations to find the remaining tensions.
- Selecting the correct cord will result in the other tensions being less than 100#.
Step 3: Equilibrium Equations
- Step 3: The equilibrium equations are written and observations are made regarding calculated tensions.
- ΣFx = 0 = 100cos(45°) + ABcos(75°) – AD
- ΣFy = 0 = 100sin(45°) – ABsin(75°)
- The result is AD = 89.66 lbs and AB = 73.19 lbs.
Step 4: Free Diagram
- Step 4: Diagram the following equilibrium point.
- ΣFx = 0 = BCcos(30°) – 73.19cos(75°)
- ΣFy = 0 = BCsin(30°) + 73.19sin(75°) – Wlight
- The result is BC = 21.87 lbs and Wlight = 81.63 lbs max.
System Example
- Task: Solve the system.
Cable Weights
- For the problem below, weights are connected by a cable system through an ideal pulley with no friction; find forces DB, AE, and AB
Max Cable Weight
- If the weight of 175# is unknown and cable AB's maximum tension is 500#, the maximum weight in A must be determined.
Static Rigid Bodies
- The object is non-deformable, this is not a real situation, but sufficient for practical statics problems.
- Dimensions of the object intervene in rigid-body equilibrium.
- Equilibrium requires ∑F (forces) and ∑M (moments).
Equilibrium Question
- Determine if the following figure is in equilibrium.
- The terms torque, moment, and pair are introduced.
- All three terms can be defined as a tendency to rotate.
- Moment is a general term; torque indicates torsion.
Moments & Torque
- External moments are represented as a curved double arrow or a single curved arrow according to the right-hand rule. The course uses a single curved arrow to indicate the moment.
- A pair is two parallel forces of the same magnitude in opposite directions.
- There's a demonstration of torque involving twisting a pipe as it causes torsion to appear.
Figure Analysis
- The question is posed to identify which of the figures is an example of a moment
- Also the state of equilibrium is investigated
- Furthermore, the additional product produced by torsion is inquired about
Calculating Moment
- The equations for calculating a moment are M= F * d, where
- F is Force
- d is the perpendicular distance to the force vector.
- Additionally M = r x F, where
- r represents the position vector
Position Vector
- The location of the tail of a vector, from where the moment needs to be known, and whose point falls on the line of action of the force creating the moment.
- It is clarified that r is a position vector, not a unit vector, and is not related to Lamda (λ).
Moment Magnitude
- The equation for calculating a moment is M = F * d, where:
- F: is force, and
- d: is the perpendicular distance to the force vector Also M = r x F
- Where r is a positional vector, which is the location of the tail of a vector from where it is required to know the moment and whose point falls into the line of action of the force
- It's also clarified that r is a positional vector and NOT a unit vector, in addition to not being equal to Lamda(λ), and it's stated that the magnitude of any Lambda (λ) is one, in effect, lacking to show the space to discover the moments, from which the distance required to know it can be extracted.
Moment Characteristics
- Characteristics of the moment:
- A torque wrench is presented as an example
- One way to increase a moment is by increasing its arm or the distance d, or the position vector in a vectorial manner
Increasing Torque
- There's a demonstration of the capacity to make the nut rotate increasing when the key has its length also boosted.
2D Problems
- The resolution of 2D problems is performed in two manners, first M = r x F needs to be written in a Cartesian format from which both the vector of position and the force.
- Then obtaining a cross product using the determinant method or Cramer's rule.
Moment Calculation
- The other method to find the moment would be through the components of force multiplied by their perpendicular distance.
Determinant Methodology
- Calculate the cross-product
- Create a matrix with vectorial components î,ĵ, and k in the first fila
- In the second fila, vectorial components of the first vector are collated
- In the third fila, the components of the second vector are placed.
Vectorial Quantities
- Cover the î column and by means of cross-multiplication multiply the coefficients of the first vector with the coefficients of the ĥ vector, then subtract the * k* components of the second vector.
Cross Product
- Vectorial quantities (Cont.):
- Next, the j column will be removed to commence its multiplication and find the factor of vector for the coefficient of vector by the result, but subtracting the resulting coefficients and vector by the result.
- The outcome for this term has a subtraction sign before the operation and the cofactor for the situation is negative.
Cross Product Multiplying
- In the next step, the coefficient (k) for the first vector requires a product and the coefficient for the unit (i) and its position need to be the position vector from which the unit vector is also necessary for the vectorial coefficients and its result must be also used.
- Finally, the cross product result for the position in each unit needs to occur.
Matrix Steps
- An example for calculating axb is laid out
- The first step is building the matrix
- a = 5î - 7ĵ + ak
- b = 6î + 8ĵ - 7k
Cover J
- In second, “j” gets covered while multiplying "j" to "k" for the first vector.
Negative Sing
- Negative Sing:
- Step A: "î" gets covered, and it will be "I" x " K"
- The product must precede a negative sign
Vector Calculation
- Step #4: Cover k and multiply “i” times “j” for the second vector and then reverse to the first, This term MUST be positive
- In step #5 the equation, which yields: [(49) - (16)] i - [(−35) – (12)]j + [(40) – (-42)] k = 33i + 47j + 82k
Examples to Practice
- Find axb.
Moment Example
- Example: Calculate the moment using two methods.
- A pole attached at the bottom makes a 30 degree angle with the ground.
- There is a force of 100 # a the top of the pole.
Moments Around a Point
- Take into account knowing the momentum by vector method requires performing the product in given order M =řxF
- Vectorial Methods should obtain a accurate result. Component Method; F* d requires only for the distance to be the force perpendicular. The method F*d should be for 2D scenarios
Recommendable Products
- The method M =řxF and is recommended for 3-dimensions as its is on axis (3D) *
Moment Considerations
- In cases one were to use M=F"d in (3D), ensure a consideration
- A force in 2 units doesn't occur in other ones or otherwise.
- A final note about a difference in momentum
Moments Around a Point: Right-Hand Rule
- Moments Around Point Rule (Right-Hand):
- Pointing fingers (on your right-hand) at position vector
Right Hand Vectors
- The thumb in (R.H.) shows what direction the Force Vector is pushing (it pushes).
- The First vector (i) that pushes the Vector's arm for (positive or negative) Moments.
Moment Problems
- Find both ways the Vector that applies the Momentum to point A. (Two examples are cited for this Point).
Class Problems
- Examples of calculating the moment at point using M=Fd* and M = r x F
Torque & Force
- If the Force to arm are perpendicular then the results are max!
Tensile Cord Question
- What happens as the Tension is 2500lbs?
- And what way does the Tensile pull?
Moment Around Axis
- The amount that occurs around any given area, like air flow!
- Vectors have used for known parts for a test
Procedure for Calculation
- Procedure for Calculation:
- A: Place the first Unit in (Cartesian) form.
- B: PinPoint the right location for the Axle (360 spin).
- C: Align vector tail at the Rotation Axis.
- D: Draw+ (Cartesian) force action.
- E: Vector forces (Cart).
Matrical Methods
- Matrical:
- a) (this generates momentum: cartesian);
-
- Write the Unit Vector (Cartesian) for the Arbritary Axle;
-
- dot point, vector (Moment) the Unit's Axe. Note: scalar, it also measures the (Arbertary) movement and is (negative or positive*
- The axis moment is the arbritary anti-clock.
Torque Findings
- Solve Vector to tube
Vectory Point
- Follow vectors to there points
Cartesian Expression
- Vector is already expressed
Calculating Torque
- Solve for products
Vectory findings for point A through B for Axles
- Vectors must also have a Torque/Vector A.
Finding Point Products
- Step by point from now on
Axis Torques
- Find axis the tube M=F*d, M = ř x F, solución a los problemas de clase.
Moment Findings
Calculations need what to do with max and mins
- to offer max; Vector forces have perpendicular angles -to offer min: Vectors must be close in length.
Rigid Cord Notes
- At Point A, the Pull occurs while the String is at (2500lbs force for Max. Points).
Areas of All Arcs
- The Axial is the (Rotation/Torque Point Vectors = The Vector that flows to point by the arbritary
Summary of Finding
- Find where the axis is at the torque -
Equivalent Systems
- In finding areas and what connects them it can cause (one) Force at (same) point.
- Redact (Re-State/Sub) you can re work parts to cause basic patterns
Equivalent Notes
- System types may vary! (1+ A and C will be easy finds)!
Equivalent Systems
The systems should have force in place while the other does not require a multiplier and sum. to that degree.
Moment Observations
If there are systems that have observations that occur for multipliers then the system is (Horizontally) positive and visa versa.
Equal Forms Rules
- You must find an equal version and follow equal rules or steps
- Find (X) Force for first System
Make (system) find Y power * equal systems And finally, make (S) to see what equal
Simplified Step
- Step 4 must show each force equal
Equal System
- Step= Be Cautios, force must meet/greet
Beam Load
- Replace this by : A Par or Force with a Force at all
Task to March
Equivalent force, in task. A force in action.
Studying That Suits You
Use AI to generate personalized quizzes and flashcards to suit your learning preferences.