Pandas Library: Data Manipulation in Python

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to Lesson

Podcast

Play an AI-generated podcast conversation about this lesson
Download our mobile app to listen on the go
Get App

Questions and Answers

What is the primary purpose of the pandas.DataFrame.duplicated() function?

  • To count the number of duplicate values in a specific column.
  • To replace duplicate values with `NaN` values.
  • To identify and locate duplicate rows within a DataFrame. (correct)
  • To remove duplicate rows from a DataFrame.

Which pandas function should you use to get counts of the different data types present in a DataFrame?

  • `dataframe.info()`
  • `dataframe.describe()`
  • `dataframe.dtypes()`
  • `dataframe.get_dtype_counts()` (correct)

What is the main difference between pandas.DataFrame.drop() and pandas.DataFrame.dropna()?

  • There is no difference; both functions perform the same operation.
  • `drop()` modifies the DataFrame in place, while `dropna()` returns a new DataFrame.
  • `drop()` removes rows with missing values, while `dropna()` removes specified columns.
  • `drop()` removes rows or columns by label, while `dropna()` removes rows with missing values. (correct)

When reading a .txt file with pandas, what might cause numeric values to be displayed as averages instead of the raw text?

<p>Incorrect delimiter specification in <code>pd.read_table()</code>. (C)</p> Signup and view all the answers

What is the purpose of the describe() function in the pandas library?

<p>To calculate and display the statistical five-number summary of the DataFrame. (B)</p> Signup and view all the answers

How can you read an excel file in pandas?

<p><code>pd.read_excel()</code> (C)</p> Signup and view all the answers

Why is converting special or junk characters to NaN a useful step in data cleaning with pandas?

<p>It enables the use of pandas functions designed to handle missing values. (B)</p> Signup and view all the answers

If df refers to your DataFrame, how do you access a specific value at a known index and column label?

<p>Both B and C (D)</p> Signup and view all the answers

When using the apply() function, what role does a lambda function typically play?

<p>It returns a value based on specified conditions, which apply across rows/columns. (B)</p> Signup and view all the answers

Which of the following statements accurately describes the dimensions of a pandas DataFrame?

<p>A DataFrame always has two dimensions: rows and columns. (C)</p> Signup and view all the answers

Flashcards

How to import Pandas in Spyder?

To add Pandas to Spyder, use the command import pandas as pd.

Reading excel files in Pandas

Python supports both .xls and .xlsx formats. Use pd.read_excel('file_name.xls') or pd.read_excel('file_name.xlsx').

Data type of a single column.

Use df1['column_name'].dtypes to return the data type of a single column in the Pandas DataFrame.

Unique data type counts

dataframe.get_dtype_counts() returns counts of each data type in a DataFrame.

Signup and view all the flashcards

Finding duplicate rows

pandas.DataFrame.duplicated() function identifies duplicate rows.

Signup and view all the flashcards

Importing a CSV file

pandas.read_csv("path") imports CSV files.

Signup and view all the flashcards

Statistical summary

describe() from the Pandas library displays statistical five-number summary.

Signup and view all the flashcards

Dropping rows/columns in Pandas

pandas.DataFrame.drop() removes rows/columns. pandas.DataFrame.dropna() drops rows with missing values.

Signup and view all the flashcards

Handling junk characters

Convert special or junk characters to NaN. Use dropna() to drop rows with NaN or fillna() to fill NaN values

Signup and view all the flashcards

DataFrame dimensions

A DataFrame consists of 2 dimensions: rows and columns.

Signup and view all the flashcards

Study Notes

  • Pandas is a Python library used for data manipulation and analysis

Adding Pandas to Spyder

  • Use import pandas as pd

Reading Excel Files

  • Python supports .xls and .xlsx formats via Pandas
  • Use import pandas as pd
  • To read .xls files: xls = pd.read_excel('file_name.xls')
  • To read .xlsx files: xlsx = pd.read_excel('file_name.xlsx')

Data Type of a Single Column

  • To return the data type of a single column: df1['column_name'].dtypes

Iris Data Sample

  • Iris_data_sample is not a default built-in dataset in Pandas

Pandas Installation Directory

  • Use import pandas followed by pandas.__path__ to find the directory of the pandas library

Unique Data Types in a DataFrame

  • Use dataframe.get_dtype_counts() to get the number of unique data types
  • The function returns a Pandas series object that contains the counts of each data type in the Pandas object

Reducing Memory Usage

  • Converting data types from object to category reduces memory usage

Handling .txt Files with Special Characters

  • To read .txt files, use these codes:
  • data_txt1=pd.read_table('Iris_data.txt',delimiter=" ")
  • data_txt2=pd.read_csv('Iris_data.txt',delimiter=" ")

Finding Duplicate Values in a DataFrame

  • To find duplicate values, use pandas.DataFrame.duplicated() function

Built-in Python Functions

  • Python has many useful built-in functions, refer to the documentation for each library

Importing .csv Files

  • Use pandas.read_csv("path") to import .csv files

Statistical Summary

  • describe() function from the Pandas library returns the statistical five-number summary

Pandas DataFrame Drop Functions

  • Key difference between pandas.DataFrame.drop() and pandas.DataFrame.dropna()
  • pandas.DataFrame.drop() removes rows or columns by specifying label names/index/column names
  • pandas.DataFrame.dropna() drops rows with missing values

Dealing with Special Characters

  • Converting special/junk characters to NaN simplifies data cleaning because Pandas offers functions to handle NaN values
  • pandas.DataFrame.dropna() drops rows with NaN values
  • pandas.DataFrame.fillna() fills NaN values

Importing 'os' Library

  • Importing the os library is not required for using the cd command

Categorical Data

  • Refer to the documentation to understand categorical data

Spearman's Correlation Coefficient

  • Refer to the documentation for information on Spearman correlation in Python

Entire Column as Object with One 'NaN' Value

  • If there's only one NaN value in an entire column, the column becomes an object if its data type was previously category

DataFrame Select Data Types Function

  • dataframe.select_dtypes(include=None, exclude=None) - Include and exclude arguments specify which data types to select

Lambda Function with Apply Function

  • Lambda returns a value based on specified conditions and apply functions applies it across rows/columns

Accessing Values in a Specific Index Range

  • If df is the name of the DataFrame:
  • df.at() accesses single values
  • df.loc() or df.iloc() accesses a range of values

DataFrame Dimensions

  • DataFrame consists of only 2 dimensions: rows and columns
  • Each column stores data for a specific dimension

Selecting Multiple Columns

  • There are methods to select multiple columns from a DataFrame, refer to the documentation for guidance

Studying That Suits You

Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

Quiz Team

Related Documents

More Like This

Pandas Data Manipulation Tool
12 questions

Pandas Data Manipulation Tool

StraightforwardFallingAction8866 avatar
StraightforwardFallingAction8866
Pandas for Data Manipulation
10 questions

Pandas for Data Manipulation

StraightforwardFallingAction8866 avatar
StraightforwardFallingAction8866
Pandas DataFrames and Data Manipulation
32 questions
Use Quizgecko on...
Browser
Browser