Operaciones fraccionarias
10 Questions
3 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

¿Cuál es el resultado de la siguiente operación: 3/5 + 4/2]?

  • \(\frac{23}{20}\)
  • \(\frac{1}{4}\)
  • \(\frac{11}{20}\) (correct)
  • \(\frac{13}{9}\)
  • ¿Cuál es el resultado de la siguiente operación: \[\frac{2}{3} \times \frac{4}{7}]?

  • \(\frac{8}{21}\) (correct)
  • \(\frac{8}{10}\)
  • \(\frac{6}{21}\)
  • \(\frac{1}{10}\)
  • ¿Cuál es el resultado de la siguiente operación: \[\frac{5}{8} - \frac{1}{3}]?

  • \(\frac{11}{24}\) (correct)
  • \(-\frac{3}{24}\)
  • \(\frac{3}{8}\)
  • \(\frac{1}{24}\)
  • ¿Cuál es el resultado de la siguiente operación: \[\frac{4}{5} : \frac{2}{3}]?

    <p>(\frac{16}{15})</p> Signup and view all the answers

    ¿Cuál es el resultado de la siguiente operación: \[\frac{7}{9} + \frac{3}{7}]?

    <p>(\frac{10}{63})</p> Signup and view all the answers

    ¿Cuál es el resultado de dividir \rac{5}{11} imes rac{3}{4}?

    <p>\frac{15}{44}</p> Signup and view all the answers

    Si se divide \rac{8}{5} \ ext{entre}\ \rac{2}{3}, ¿cuál es el resultado final?

    <p>\frac{24}{5}</p> Signup and view all the answers

    ¿Cuál es el resultado de sumar \rac{1}{2} + \rac{3}{4}?

    <p>\frac{7}{8}</p> Signup and view all the answers

    Si se restan \rac{4}{9} - \rac{1}{3}, ¿qué fracción se obtiene?

    <p>\frac{2}{9}</p> Signup and view all the answers

    ¿Cuál es el resultado de la siguiente multiplicación: \rac{2}{5} imes \rac{6}{7}?

    <p>\frac{12}{35}</p> Signup and view all the answers

    Study Notes

    Combining Fractional Operations

    Fractions can seem like complex entities when we first encounter them, but they become easier to understand once you know how to perform basic mathematical operations with them. This guide will walk you through combining four key fractional operations: division, multiplication, subtraction, and addition. Our goal is to demystify these processes by illustrating each operation step-by-step.

    Division with Fractions

    To divide fractions, swap the dividend (the number above the line) and divisor (the number below the line), then flip both numbers upside down. Multiply this new expression just created, and your result will be the original dividend divided by the original divisor.

    For example, let's calculate [\frac{6}{7} \div \frac{2}{9}]. First, swap the pieces and turn them upside down: [-\frac{7}{6} \cdot \frac{9}{2}]. Now multiply: [ -\frac{63}{12}= -\frac{31}{6}.] Flipping back a negative sign gives us our final answer: [\frac{31}{6}].

    Multiplication with Fractions

    Multiplying fractions involves finding the product of their numerators while keeping track of the denominators separately. Then, simplify the resulting fraction if possible.

    Continuing from the previous section's example, multiplying two fractions instead:[\left( \frac{6}{7} \right)\times\left(\frac{2}{9}\right)=\frac{12}{63}=\frac{4}{21}].

    Subtraction with Fractions

    Subtracting fractions requires converting one fraction into an equivalent fraction with opposite signs, adding, then flipping the sign again. Let's try it out using [\frac{8}{15}-\frac{3}{10}]:

    First, make the second fraction have the same denominator as the first (in this case (15)): [\frac{8}{15} - \frac{3\times\frac{3}{5}}{10} = \frac{8}{15}-\frac{9}{50}]. Next, combine the expressions and keep track of the denominator: [\frac{8\times\frac{5}{5} - 9}{50} = \frac{\cancelto{40}{8\times\frac{5}{5}} - 9}{\cancelto{50}{50}}]= [\frac{40-9}{50}=\frac{31}{50}].

    Addition with Fractions

    Adding fractions follows essentially the same steps as subtraction; however, since unlike terms are added without any changes, the process is typically more straightforward.

    Let's compute [\frac{5}{12}+\frac{1}{6}]:

    [ \frac{5}{12}+\frac{1\times\frac{2}{3}}{6} =\frac{5}{12}+\frac{2}{18}=\frac{5+2}{12\times\frac{3}{3}}=\frac{7}{12}].

    In summary, performing operations on fractions may initially appear daunting, especially given their symbolic nature. However, by understanding the principles behind each operation, working through examples, and applying these concepts consistently, you'll find handling fractions becomes much simpler.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Description

    Aprende a realizar operaciones básicas con fracciones, como la división, multiplicación, resta y suma. Desde intercambiar los dividendos y divisores hasta simplificar los resultados, este guía te mostrará paso a paso cómo combinar correctamente las fracciones. Incluso se incluyen ejemplos para una comprensión más clara.

    Use Quizgecko on...
    Browser
    Browser