Podcast
Questions and Answers
Evaluate ∫∫ e x2 + y2 dA, where R is the unit circle centered R at the origin. Solution: To integrate the exponential function, we need to get the derivative of its power. In our case we have not that so we shall change to ______ coordinate.
Evaluate ∫∫ e x2 + y2 dA, where R is the unit circle centered R at the origin. Solution: To integrate the exponential function, we need to get the derivative of its power. In our case we have not that so we shall change to ______ coordinate.
polar
Multiple Integrals and their applications ______ Coordinates & r 2 = x2 + y2 x = r cos θ & y = r sin θ d A = r d r dθ P (x , y ) r θ Dr. Mohamed Abdelhakem y x
Multiple Integrals and their applications ______ Coordinates & r 2 = x2 + y2 x = r cos θ & y = r sin θ d A = r d r dθ P (x , y ) r θ Dr. Mohamed Abdelhakem y x
Polar
The area is a unite circle at the origin. So, r change from zero to 1 (form the origin to the radius) and θ will rotate to scan the circle i.e. 0 ≤ θ ≤ 2 Ï€. Then, ∫∫ e x2 + y2 dA = 2Ï€ 1 ∫ ∫e 0 R 1 = 2 Dr. Mohamed Abdelhakem r2 rd rdθ 0 2Ï€ ∫ 0 1 r2   ∫ e (2 r ) d r  d θ   ï£0 
The area is a unite circle at the origin. So, r change from zero to 1 (form the origin to the radius) and θ will rotate to scan the circle i.e. 0 ≤ θ ≤ 2 Ï€. Then, ∫∫ e x2 + y2 dA = 2Ï€ 1 ∫ ∫e 0 R 1 = 2 Dr. Mohamed Abdelhakem r2 rd rdθ 0 2Ï€ ∫ 0 1 r2   ∫ e (2 r ) d r  d θ   ï£0 
polar
∫∫ e R x2 + y2 1 dA = 2 2Ï€ 1 = 2 2Ï€ ∫ 0 e  ï£ r2    1 0 dθ ∫ (e − 1) d θ 0 1 2Ï€ = (e − 1) (θ ) 0 = Ï€ (e − 1) 2 Dr.
∫∫ e R x2 + y2 1 dA = 2 2Ï€ 1 = 2 2Ï€ ∫ 0 e  ï£ r2    1 0 dθ ∫ (e − 1) d θ 0 1 2Ï€ = (e − 1) (θ ) 0 = Ï€ (e − 1) 2 Dr.
Basic Science Department Mathematics 3 BAS 111 – BSC 111 3 Credit Hrs Lecture 9 Dr. Mohamed Abdelhakem Page 1 of 41 Mathematics 3 (BAS 111 – BSC 111) Fall 2023 Lec 9 Basic Science Department Multiple Integrals and their applications ______ Coordinates & r 2 = x2 + y2 x = r cos θ & y = r sin θ d A = r d r dθ P (x , y ) r θ Dr. Mohamed Abdelhakem y x
Basic Science Department Mathematics 3 BAS 111 – BSC 111 3 Credit Hrs Lecture 9 Dr. Mohamed Abdelhakem Page 1 of 41 Mathematics 3 (BAS 111 – BSC 111) Fall 2023 Lec 9 Basic Science Department Multiple Integrals and their applications ______ Coordinates & r 2 = x2 + y2 x = r cos θ & y = r sin θ d A = r d r dθ P (x , y ) r θ Dr. Mohamed Abdelhakem y x