ملاحظات دراسة حساب التفاضل والتكامل
10 Questions
0 Views

Choose a study mode

Play Quiz
Study Flashcards
Spaced Repetition
Chat to lesson

Podcast

Play an AI-generated podcast conversation about this lesson

Questions and Answers

ما هو ناتج التكامل ∫ sin(3x) dx؟

  • 1/3 sin(3x) + c
  • 1/3 cos(3x) + c
  • -1/3 cos(3x) + c (correct)
  • -3 cos(3x) + c
  • ما هو التعبير الصحيح للتكامل ∫ csc²(2x) dx؟

  • 1/2 tan(2x) + c
  • -1/2 cot(2x) + c (correct)
  • 1/2 csc(2x) + c
  • -2 cot(2x) + c
  • إذا كان ∫ cos(5x) dx، فإن النتيجة ستكون:

  • -5 sin(5x) + c
  • -1/5 sin(5x) + c
  • 5 sin(5x) + c
  • 1/5 sin(5x) + c (correct)
  • ما هي نتيجة التكامل ∫ sec(2x) tan(2x) dx؟

    <p>1/2 sec(2x) + c</p> Signup and view all the answers

    التكامل ∫ sec²(4x) dx ينتج:

    <p>1/4 tan(4x) + c</p> Signup and view all the answers

    ما هو الشكل الصحيح لتكامل الدالة المثلثية ∫ tan(3x) sec(3x) dx؟

    <p>1/3 tan(3x) + c</p> Signup and view all the answers

    التعبير الصحيح عن ∫ csc(5x) dx هو:

    <p>-1/5 cot(5x) + c</p> Signup and view all the answers

    ما هو الناتج الصحيح للفائدة من ∫ sec²(2x) dx؟

    <p>1/2 tan(2x) + c</p> Signup and view all the answers

    إذا قمنا بحساب التكامل ∫ sin(4x) dx، ستكون النتيجة:

    <p>-1/4 cos(4x) + c</p> Signup and view all the answers

    ما هي النتيجة الصحيحة لـ ∫ sec(7x) tan(7x) dx؟

    <p>1/7 sec(7x) + c</p> Signup and view all the answers

    Study Notes

    Calculus Study Notes

    • Integration: The inverse process of differentiation, denoted by ∫. The symbol dx represents integration with respect to x, similarly dy represents integration with respect to y.

    • Indefinite Integrals: Rules for calculating integrals without specific limits. The general form is ∫ f(x) dx = F(x) + C, where F(x) is the antiderivative of f(x) and C is the constant of integration.

    • Rules: There are general rules for integration, but there is no singular rule for every function (fractions, roots, products of functions). A major type of integral rule is for integral of a constant.

    • Example Integrals (with Constants):

    • ∫ a dx = ax + c

    • ∫ 6 dx = 6x + c

    • ∫ √5 dx = √5x + c

    • ∫ xⁿ dx = xn+1 / (n+1) + c (n ≠ -1)

    • Power Rule for Integration: ∫x²dx = x³/3+C

    • Example Integrals (with Variable):

    • ∫x²dx = x³/3 + c

    • ∫x⁵dx = x⁶/6+c

    • ∫5x³dx = (5x⁴)/4 + c

    • ∫4x²dx = (4x³/3) + c

    • Integration of Roots: ∫√x dx = (2/3)x^(3/2) + C.

    • Integration of Fractions: Example, ∫x⁻²dx = -x⁻¹ + C.

    • Integration of Polynomial Functions: Examples for integrating polynomials

    • ∫ (5x² + 3x - 2) dx = (5x³/3) + (3x²/2) - 2x + c

    • Integration of Powers: Example,

    • ∫ (3x² + 5)³(3x + 4) dx = (3x² + 5)⁴/8 + C

    • Integration by substitution: Example, ∫2x√(x² + 8x + 5)(6x + 8) dx = (3x² + 8x + 5)⁷/7+c

    • Integral of constants: A constant value multiplied by the variable will integrate to be the constant multiplied by the variable raised to an additional 1 power divided by the added power, plus the constant of integration, as in ∫(5x³)dx = 5x⁴/4 + C

    • Definite Integrals: Integrals with specific limits of integration. The result represents the signed area under the curve between the limits a and b (∫a to b f(x)dx). Important: A constant of integration is not introduced in results of definite integration.

    Studying That Suits You

    Use AI to generate personalized quizzes and flashcards to suit your learning preferences.

    Quiz Team

    Related Documents

    Description

    يتناول هذا المحتوى عملية التكامل وكيفية حساب التكاملات غير المحددة. يشمل القواعد الأساسية للتكامل مع أمثلة توضيحية تساعد في فهم المبادئ الأساسية لهذا الموضوع. تعلم هذه المفاهيم ضروري لأي دراسة في حساب التفاضل والتكامل.

    More Like This

    Use Quizgecko on...
    Browser
    Browser